48 resultados para Zero-Divisor Graphs
Resumo:
Estimation of population size with missing zero-class is an important problem that is encountered in epidemiological assessment studies. Fitting a Poisson model to the observed data by the method of maximum likelihood and estimation of the population size based on this fit is an approach that has been widely used for this purpose. In practice, however, the Poisson assumption is seldom satisfied. Zelterman (1988) has proposed a robust estimator for unclustered data that works well in a wide class of distributions applicable for count data. In the work presented here, we extend this estimator to clustered data. The estimator requires fitting a zero-truncated homogeneous Poisson model by maximum likelihood and thereby using a Horvitz-Thompson estimator of population size. This was found to work well, when the data follow the hypothesized homogeneous Poisson model. However, when the true distribution deviates from the hypothesized model, the population size was found to be underestimated. In the search of a more robust estimator, we focused on three models that use all clusters with exactly one case, those clusters with exactly two cases and those with exactly three cases to estimate the probability of the zero-class and thereby use data collected on all the clusters in the Horvitz-Thompson estimator of population size. Loss in efficiency associated with gain in robustness was examined based on a simulation study. As a trade-off between gain in robustness and loss in efficiency, the model that uses data collected on clusters with at most three cases to estimate the probability of the zero-class was found to be preferred in general. In applications, we recommend obtaining estimates from all three models and making a choice considering the estimates from the three models, robustness and the loss in efficiency. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Resumo:
A sparse kernel density estimator is derived based on the zero-norm constraint, in which the zero-norm of the kernel weights is incorporated to enhance model sparsity. The classical Parzen window estimate is adopted as the desired response for density estimation, and an approximate function of the zero-norm is used for achieving mathemtical tractability and algorithmic efficiency. Under the mild condition of the positive definite design matrix, the kernel weights of the proposed density estimator based on the zero-norm approximation can be obtained using the multiplicative nonnegative quadratic programming algorithm. Using the -optimality based selection algorithm as the preprocessing to select a small significant subset design matrix, the proposed zero-norm based approach offers an effective means for constructing very sparse kernel density estimates with excellent generalisation performance.
Resumo:
The optimal and the zero-forcing beamformers are two commonly used algorithms in the subspace-based blind beamforming technology. The optimal beamformer is regarded as the algorithm with the best output SINR. The zero-forcing algorithm emphasizes the co-channel interference cancellation. This paper compares the performance of these two algorithms under some practical conditions: the effect of the finite data length and the existence of the angle estimation error. The investigation reveals that the zero-forcing algorithm can be more robust in the practical environment than the optimal algorithm.
Resumo:
A new sparse kernel probability density function (pdf) estimator based on zero-norm constraint is constructed using the classical Parzen window (PW) estimate as the target function. The so-called zero-norm of the parameters is used in order to achieve enhanced model sparsity, and it is suggested to minimize an approximate function of the zero-norm. It is shown that under certain condition, the kernel weights of the proposed pdf estimator based on the zero-norm approximation can be updated using the multiplicative nonnegative quadratic programming algorithm. Numerical examples are employed to demonstrate the efficacy of the proposed approach.
Resumo:
In this paper we study generalised prime systems for which the integer counting function NP(x) is asymptotically well behaved, in the sense that NP(x)=ρx+O(xβ), where ρ is a positive constant and . For such systems, the associated zeta function ζP(s) is holomorphic for . We prove that for , for any ε>0, and also for ε=0 for all such σ except possibly one value. The Dirichlet divisor problem for generalised integers concerns the size of the error term in NkP(x)−Ress=1(ζPk(s)xs/s), which is O(xθ) for some θ<1. Letting αk denote the infimum of such θ, we show that .
Resumo:
Following the US model, the UK has seen considerable innovation in the funding, finance and procurement of real estate in the last decade. In the growing CMBS market asset backed securitisations have included $2.25billion secured on the Broadgate office development and issues secured on Canary Wharf and the Trafford Centre regional mall. Major occupiers (retailer Sainsbury’s, retail bank Abbey National) have engaged in innovative sale & leaseback and outsourcing schemes. Strong claims are made concerning the benefits of such schemes – e.g. British Land were reported to have reduced their weighted cost of debt by 150bp as a result of the Broadgate issue. The paper reports preliminary findings from a project funded by the Corporation of London and the RICS Research Foundation examining a number of innovative schemes to identify, within a formal finance framework, sources of added value and hidden costs. The analysis indicates that many of the gains claimed conceal costs – in terms of market value of debt or flexibility of management – while others result from unusual firm or market conditions (for example utilising the UK long lease and the unusual shape of the yield curve). Nonetheless, there are real gains resulting from the innovations, reflecting arbitrage and institutional constraints in the direct (private) real estate market
Resumo:
Statistical graphics are a fundamental, yet often overlooked, set of components in the repertoire of data analytic tools. Graphs are quick and efficient, yet simple instruments of preliminary exploration of a dataset to understand its structure and to provide insight into influential aspects of inference such as departures from assumptions and latent patterns. In this paper, we present and assess a graphical device for choosing a method for estimating population size in capture-recapture studies of closed populations. The basic concept is derived from a homogeneous Poisson distribution where the ratios of neighboring Poisson probabilities multiplied by the value of the larger neighbor count are constant. This property extends to the zero-truncated Poisson distribution which is of fundamental importance in capture–recapture studies. In practice however, this distributional property is often violated. The graphical device developed here, the ratio plot, can be used for assessing specific departures from a Poisson distribution. For example, simple contaminations of an otherwise homogeneous Poisson model can be easily detected and a robust estimator for the population size can be suggested. Several robust estimators are developed and a simulation study is provided to give some guidance on which should be used in practice. More systematic departures can also easily be detected using the ratio plot. In this paper, the focus is on Gamma mixtures of the Poisson distribution which leads to a linear pattern (called structured heterogeneity) in the ratio plot. More generally, the paper shows that the ratio plot is monotone for arbitrary mixtures of power series densities.
Resumo:
A Bond Graph is a graphical modelling technique that allows the representation of energy flow between the components of a system. When used to model power electronic systems, it is necessary to incorporate bond graph elements to represent a switch. In this paper, three different methods of modelling switching devices are compared and contrasted: the Modulated Transformer with a binary modulation ratio (MTF), the ideal switch element, and the Switched Power Junction (SPJ) method. These three methods are used to model a dc-dc Boost converter and then run simulations in MATLAB/SIMULINK. To provide a reference to compare results, the converter is also simulated using PSPICE. Both quantitative and qualitative comparisons are made to determine the suitability of each of the three Bond Graph switch models in specific power electronics applications
Resumo:
In October 2008 UK government announced very ambitious commitment to reduce greenhouse gas emissions of at least 34% by 2020 and by 80% by 2050 against a 1990 baseline. Consequently the government declares that new homes should be built to high environmental standards which means that from 2016 new homes will have to be built to a Zero Carbon standard. The paper sets out to present UK zero carbon residential development achieving the highest, Level 6 of Code for Sustainable Homes standard. Comprehensive information is provided about various environmental aspects of the housing development. Special attention is given to energy efficiency features of the houses and low carbon district heating solution which include biomass boiler, heat pumps, solar collectors and photovoltaic panels. The paper presents also challenges which designers and builders had to face delivering houses of the future.
Resumo:
The plethora, and mass take up, of digital communication tech- nologies has resulted in a wealth of interest in social network data collection and analysis in recent years. Within many such networks the interactions are transient: thus those networks evolve over time. In this paper we introduce a class of models for such networks using evolving graphs with memory dependent edges, which may appear and disappear according to their recent history. We consider time discrete and time continuous variants of the model. We consider the long term asymptotic behaviour as a function of parameters controlling the memory dependence. In particular we show that such networks may continue evolving forever, or else may quench and become static (containing immortal and/or extinct edges). This depends on the ex- istence or otherwise of certain infinite products and series involving age dependent model parameters. To test these ideas we show how model parameters may be calibrated based on limited samples of time dependent data, and we apply these concepts to three real networks: summary data on mobile phone use from a developing region; online social-business network data from China; and disaggregated mobile phone communications data from a reality mining experiment in the US. In each case we show that there is evidence for memory dependent dynamics, such as that embodied within the class of models proposed here.