30 resultados para Web-Centric Expert System
Resumo:
In recent years there has been a growing debate over whether or not standards should be produced for user system interfaces. Those in favor of standardization argue that standards in this area will result in more usable systems, while those against argue that standardization is neither practical nor desirable. The present paper reviews both sides of this debate in relation to expert systems. It argues that in many areas guidelines are more appropriate than standards for user interface design.
Resumo:
The role of the disulfide bond in amyloid-like fibrillogenesis in a model peptide system Apurba Kumar Das,(a) Michael G. B. Drew,(b) Debasish Haldar(a) and Arindam Banerjee*(a) (a)Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India. E-mail: bcab@mahendra.iacs.res.in; Fax: +91-33-2473-2805 b School of Chemistry, The University of Reading, Whiteknights, Reading, UK RG6 6AD Received 28th June 2005, Accepted 20th July 2005 First published as an Advance Article on the web 11th August 2005
Resumo:
This paper describes the development and validation of a novel web-based interface for the gathering of feedback from building occupants about their environmental discomfort including signs of Sick Building Syndrome (SBS). The gathering of such feedback may enable better targeting of environmental discomfort down to the individual as well as the early detection and subsequently resolution by building services of more complex issues such as SBS. The occupant's discomfort is interpreted and converted to air-conditioning system set points using Fuzzy Logic. Experimental results from a multi-zone air-conditioning test rig have been included in this paper.
Resumo:
This paper presents a new approach to achieving interoperability between Web-based construction products catalogues. It first introduces the current development of electronic catalogues of construction products. The common system architecture of Web-based electronic products catalogues is discussed, which is followed by a discussion on construction products information standardization and the latest distributed-systems technologies for the communication and exchange of construction products information. The latter part of this paper presents a model of interoperable Web-based construction products catalogue and an implementation of Web services in E-commerce systems to enable the sharing of construction products information.
Resumo:
The construction industry has incurred a considerable amount of waste as a result of poor logistics supply chain network management. Therefore, managing logistics in the construction industry is critical. An effective logistic system ensures delivery of the right products and services to the right players at the right time while minimising costs and rewarding all sectors based on value added to the supply chain. This paper reports on an on-going research study on the concept of context-aware services delivery in the construction project supply chain logistics. As part of the emerging wireless technologies, an Intelligent Wireless Web (IWW) using context-aware computing capability represents the next generation ICT application to construction-logistics management. This intelligent system has the potential of serving and improving the construction logistics through access to context-specific data, information and services. Existing mobile communication deployments in the construction industry rely on static modes of information delivery and do not take into account the worker’s changing context and dynamic project conditions. The major problems in these applications are lack of context-specificity in the distribution of information, services and other project resources, and lack of cohesion with the existing desktop based ICT infrastructure. The research works focus on identifying the context dimension such as user context, environmental context and project context, selection of technologies to capture context-parameters such wireless sensors and RFID, selection of supporting technologies such as wireless communication, Semantic Web, Web Services, agents, etc. The process of integration of Context-Aware Computing and Web-Services to facilitate the creation of intelligent collaboration environment for managing construction logistics will take into account all the necessary critical parameters such as storage, transportation, distribution, assembly, etc. within off and on-site project.
Resumo:
Resource monitoring in distributed systems is required to understand the 'health' of the overall system and to help identify particular problems, such as dysfunctional hardware or faulty system or application software. Monitoring systems such as GridRM provide the ability to connect to any number of different types of monitoring agents and provide different views of the system, based on a client's particular preferences. Web 2.0 technologies, and in particular 'mashups', are emerging as a promising technique for rapidly constructing rich user interfaces, that combine and present data in intuitive ways. This paper describes a Web 2.0 user interface that was created to expose resource data harvested by the GridRM resource monitoring system.
Resumo:
The paper reviews the leading diagramming methods employed in system dynamics to communicate the contents of models. The main ideas and historical development of the field are first outlined. Two diagramming methods—causal loop diagrams (CLDs) and stock/flow diagrams (SFDs)—are then described and their advantages and limitations discussed. A set of broad research directions is then outlined. These concern: the abilities of different diagrams to communicate different ideas, the role that diagrams have in group model building, and the question of whether diagrams can be an adequate substitute for simulation modelling. The paper closes by suggesting that although diagrams alone are insufficient, they have many benefits. However, since these benefits have emerged only as ‘craft wisdom’, a more rigorous programme of research into the diagrams' respective attributes is called for.
Resumo:
We describe ncWMS, an implementation of the Open Geospatial Consortium’s Web Map Service (WMS) specification for multidimensional gridded environmental data. ncWMS can read data in a large number of common scientific data formats – notably the NetCDF format with the Climate and Forecast conventions – then efficiently generate map imagery in thousands of different coordinate reference systems. It is designed to require minimal configuration from the system administrator and, when used in conjunction with a suitable client tool, provides end users with an interactive means for visualizing data without the need to download large files or interpret complex metadata. It is also used as a “bridging” tool providing interoperability between the environmental science community and users of geographic information systems. ncWMS implements a number of extensions to the WMS standard in order to fulfil some common scientific requirements, including the ability to generate plots representing timeseries and vertical sections. We discuss these extensions and their impact upon present and future interoperability. We discuss the conceptual mapping between the WMS data model and the data models used by gridded data formats, highlighting areas in which the mapping is incomplete or ambiguous. We discuss the architecture of the system and particular technical innovations of note, including the algorithms used for fast data reading and image generation. ncWMS has been widely adopted within the environmental data community and we discuss some of the ways in which the software is integrated within data infrastructures and portals.
Resumo:
The relative contributions of five variables (Stereoscopy, screen size, field of view, level of realism and level of detail) of virtual reality systems on spatial comprehension and presence are evaluated here. Using a variable-centered approach instead of an object-centric view as its theoretical basis, the contributions of these five variables and their two-way interactions are estimated through a 25-1 fractional factorial experiment (screening design) of resolution V with 84 subjects. The experiment design, procedure, measures used, creation of scales and indices, results of statistical analysis, their meaning and agenda for future research are elaborated.
Resumo:
This paper aims to design a collaboration model for a Knowledge Community - SSMEnetUK. The research identifies SSMEnetUK as a socio-technical system and uses the core concepts of Service Science to explore the subject domain. The paper is positioned within the concept of Knowledge Management (KM) and utilising Web 2.0 tools for collaboration. A qualitative case study method was adopted and multiple data sources were used. In achieving that, the degree of co-relation between knowledge management activities and Web 2.0 tools for collaboration in the scenario are pitted against the concept of value propositions offered by both customer/user and service provider. The proposed model provides a better understanding of how Knowledge Management and Web 2.0 tools can enable effective collaboration within SSMEnetUK. This research is relevant to the wider service design and innovation community because it provides a basis for building a service-centric collaboration platform for the benefit of both customer/user and service provider.
Resumo:
In this paper ensembles of forecasts (of up to six hours) are studied from a convection-permitting model with a representation of model error due to unresolved processes. The ensemble prediction system (EPS) used is an experimental convection-permitting version of the UK Met Office’s 24- member Global and Regional Ensemble Prediction System (MOGREPS). The method of representing model error variability, which perturbs parameters within the model’s parameterisation schemes, has been modified and we investigate the impact of applying this scheme in different ways. These are: a control ensemble where all ensemble members have the same parameter values; an ensemble where the parameters are different between members, but fixed in time; and ensembles where the parameters are updated randomly every 30 or 60 min. The choice of parameters and their ranges of variability have been determined from expert opinion and parameter sensitivity tests. A case of frontal rain over the southern UK has been chosen, which has a multi-banded rainfall structure. The consequences of including model error variability in the case studied are mixed and are summarised as follows. The multiple banding, evident in the radar, is not captured for any single member. However, the single band is positioned in some members where a secondary band is present in the radar. This is found for all ensembles studied. Adding model error variability with fixed parameters in time does increase the ensemble spread for near-surface variables like wind and temperature, but can actually decrease the spread of the rainfall. Perturbing the parameters periodically throughout the forecast does not further increase the spread and exhibits “jumpiness” in the spread at times when the parameters are perturbed. Adding model error variability gives an improvement in forecast skill after the first 2–3 h of the forecast for near-surface temperature and relative humidity. For precipitation skill scores, adding model error variability has the effect of improving the skill in the first 1–2 h of the forecast, but then of reducing the skill after that. Complementary experiments were performed where the only difference between members was the set of parameter values (i.e. no initial condition variability). The resulting spread was found to be significantly less than the spread from initial condition variability alone.
Resumo:
Tagging provides support for retrieval and categorization of online content depending on users' tag choice. A number of models of tagging behaviour have been proposed to identify factors that are considered to affect taggers, such as users' tagging history. In this paper, we use Semiotics Analysis and Activity theory, to study the effect the system designer has over tagging behaviour. The framework we use shows the components that comprise the tagging system and how they interact together to direct tagging behaviour. We analysed two collaborative tagging systems: CiteULike and Delicious by studying their components by applying our framework. Using datasets from both systems, we found that 35% of CiteULike users did not provide tags compared to only 0.1% of Delicious users. This was directly linked to the type of tools used by the system designer to support tagging.
Resumo:
This paper presents the mathematical development of a body-centric nonlinear dynamic model of a quadrotor UAV that is suitable for the development of biologically inspired navigation strategies. Analytical approximations are used to find an initial guess of the parameters of the nonlinear model, then parameter estimation methods are used to refine the model parameters using the data obtained from onboard sensors during flight. Due to the unstable nature of the quadrotor model, the identification process is performed with the system in closed-loop control of attitude angles. The obtained model parameters are validated using real unseen experimental data. Based on the identified model, a Linear-Quadratic (LQ) optimal tracker is designed to stabilize the quadrotor and facilitate its translational control by tracking body accelerations. The LQ tracker is tested on an experimental quadrotor UAV and the obtained results are a further means to validate the quality of the estimated model. The unique formulation of the control problem in the body frame makes the controller better suited for bio-inspired navigation and guidance strategies than conventional attitude or position based control systems that can be found in the existing literature.