47 resultados para Weather conditions.
Resumo:
Nowadays utilising the proper HVAC system is essential both in extreme weather conditions and dense buildings design. Hydraulic loops are the most common parts in all air conditioning systems. This article aims to investigate the performance of different hydraulic loop arrangements in variable flow systems. Technical, economic and environmental assessments have been considered in this process. A dynamic system simulation is generated to evaluate the system performance and an economic evaluation is conducted by whole life cost assessment. Moreover, environmental impacts have been studied by considering the whole life energy consumption, CO2 emission, the embodied energy and embodied CO2 of the system components. Finally, decision-making in choosing the most suitable hydraulic system among five well-known alternatives has been proposed.
Resumo:
An ensemble forecast is a collection of runs of a numerical dynamical model, initialized with perturbed initial conditions. In modern weather prediction for example, ensembles are used to retrieve probabilistic information about future weather conditions. In this contribution, we are concerned with ensemble forecasts of a scalar quantity (say, the temperature at a specific location). We consider the event that the verification is smaller than the smallest, or larger than the largest ensemble member. We call these events outliers. If a K-member ensemble accurately reflected the variability of the verification, outliers should occur with a base rate of 2/(K + 1). In operational forecast ensembles though, this frequency is often found to be higher. We study the predictability of outliers and find that, exploiting information available from the ensemble, forecast probabilities for outlier events can be calculated which are more skilful than the unconditional base rate. We prove this analytically for statistically consistent forecast ensembles. Further, the analytical results are compared to the predictability of outliers in an operational forecast ensemble by means of model output statistics. We find the analytical and empirical results to agree both qualitatively and quantitatively.
Resumo:
The All-Weather Volcano Topography Imaging Sensor remote sensing instrument is a custom-built millimeter-wave (MMW) sensor that has been developed as a practical field tool for remote sensing of volcanic terrain at active lava domes. The portable instrument combines active and passive MMW measurements to record topographic and thermal data in almost all weather conditions from ground-based survey points. We describe how the instrument is deployed in the field, the quality of the primary ranging and radiometric measurements, and the postprocessing techniques used to derive the geophysical products of the target terrain, surface temperature, and reflectivity. By comparison of changing topography, we estimate the volume change and the lava extrusion rate. Validation of the MMW radiometry is also presented by quantitative comparison with coincident infrared thermal imagery.
Resumo:
Patches of ionization are common in the polar ionosphere where their motion and associated density gradients give variable disturbances to High Frequency (HF) radio communications, over-the-horizon radar location errors, and disruption and errors to satellite navigation and communication. Their formation and evolution are poorly understood, particularly under disturbed space weather conditions. We report direct observations of the full evolution of patches during a geomagnetic storm, including formation, polar cap entry, transpolar evolution, polar cap exit, and sunward return flow. Our observations show that modulation of nightside reconnection in the substorm cycle of the magnetosphere helps form the gaps between patches where steady convection would give a “tongue” of ionization (TOI).
Resumo:
The North Atlantic oscillation (NAO) is under current climate conditions the leading mode of atmospheric circulation variability over the North Atlantic region. While the pattern is present during the entire year, it is most important during winter, explaining a large part of the variability of the large-scale pressure field, being thus largely determinant for the weather conditions over the North Atlantic basin and over Western Europe. In this study, a review of recent literature on the basic understanding of the NAO, its variability on different time scales and driving physical mechanisms is presented. In particular, the observed NAO variations and long-term trends are put into a long term perspective by considering paleo-proxy evidence. A representative number of recently released NAO reconstructions are discussed. While the reconstructions agree reasonably well with observations during the instrumental overlapping period, there is a rather high uncertainty between the different reconstructions for the pre-instrumental period, which leads to partially incoherent results, that is, periods where the NAO reconstructions do not agree even in sign. Finally, we highlight the future need of a broader definition of the NAO, the assessment of the stability of the teleconnection centers over time, the analysis of the relations to other relevant variables like temperature and precipitation, as well as on the relevant processes involved
Resumo:
The behavior of the Sun and near-Earth space during grand solar minima is not understood; however, the recent long and low minimum of the decadal-scale solar cycle gives some important clues, with implications for understanding the solar dynamo and predicting space weather conditions. The speed of the near-Earth solar wind and the strength of the interplanetary magnetic field (IMF) embedded within it can be reliably reconstructed for before the advent of spacecraft monitoring using observations of geomagnetic activity that extend back to the mid-19th century. We show that during the solar cycle minima around 1879 and 1901 the average solar wind speed was exceptionally low, implying the Earth remained within the streamer belt of slow solar wind flow for extended periods. This is consistent with a broader streamer belt, which was also a feature of the recent low minimum (2009), and yields a prediction that the low near-Earth IMF during the Maunder minimum (1640-1700), as derived from models and deduced from cosmogenic isotopes, was accompanied by a persistent and relatively constant solar wind of speed roughly half the average for the modern era.
Resumo:
Aims: This experiment aimed to determine whether the soil application of organic fertilizers can help the establishment of cacao and whether shade alters its response to fertilizers. Study Design: The 1.6 ha experiment was conducted over a period of one crop year (between April 2007 and March 2008) at the Cocoa Research Institute of Ghana. It involved four cacao genotypes (T 79/501, PA 150, P 30 [POS] and SCA 6), three shade levels (‘light’, ‘medium’ and ‘heavy’) and two fertilizer treatments (‘no fertilizer’, and ‘140 kg/ha of cacao pod husk ash (CPHA) plus poultry manure at 1,800 kg/ha). The experiment was designed as a split-plot with the cacao genotypes as the main plot factor and shade x fertilizer combinations as the sub-plots. Methodology: Gliricidia sepium and plantains (Musa sapientum) were planted in different arrangements to create the three temporary shade regimes for the cacao. Data were collected on temperature and relative humidity of the shade environments, initial soil nutrients, soil moisture, leaf N, P and K+ contents, survival, photo synthesis and growth of test plants. Results: The genotypes P 30 [POS] and SCA 6 showed lower stomatal conductance under non-limiting conditions. In the rainy seasons, plants under light shade had the highest CO2 assimilation rates. However, in the dry season, plants under increased shade recorded greater photosynthetic rates (P = .03). A significant shade x fertilizer interaction (P = .001) on photosynthesis in the dry season showed that heavier shade increases the benefits that young cacao gets from fertilizer application in that season. Conversely, shade should be reduced during the wet seasons to minimize light limitation to assimilation. Conclusion: Under ideal weather conditions young cacao exhibits genetic variability on stomatal conductance. Also, to optimize plant response to fertilizer application shade must be adjusted taking the prevailing weather condition into account.
Resumo:
Electrical methods of geophysical survey are known to produce results that are hard to predict at different times of the year, and under differing weather conditions. This is a problem which can lead to misinterpretation of archaeological features under investigation. The dynamic relationship between a ‘natural’ soil matrix and an archaeological feature is a complex one, which greatly affects the success of the feature’s detection when using active electrical methods of geophysical survey. This study has monitored the gradual variation of measured resistivity over a selection of study areas. By targeting difficult to find, and often ‘missing’ electrical anomalies of known archaeological features, this study has increased the understanding of both the detection and interpretation capabilities of such geophysical surveys. A 16 month time-lapse study over 4 archaeological features has taken place to investigate the aforementioned detection problem across different soils and environments. In addition to the commonly used Twin-Probe earth resistance survey, electrical resistivity imaging (ERI) and quadrature electro-magnetic induction (EMI) were also utilised to explore the problem. Statistical analyses have provided a novel interpretation, which has yielded new insights into how the detection of archaeological features is influenced by the relationship between the target feature and the surrounding ‘natural’ soils. The study has highlighted both the complexity and previous misconceptions around the predictability of the electrical methods. The analysis has confirmed that each site provides an individual and nuanced situation, the variation clearly relating to the composition of the soils (particularly pore size) and the local weather history. The wide range of reasons behind survey success at each specific study site has been revealed. The outcomes have shown that a simplistic model of seasonality is not universally applicable to the electrical detection of archaeological features. This has led to the development of a method for quantifying survey success, enabling a deeper understanding of the unique way in which each site is affected by the interaction of local environmental and geological conditions.
Resumo:
The El Niño/Southern Oscillation (ENSO) is the dominant climate phenomenon affecting extreme weather conditions worldwide. Its response to greenhouse warming has challenged scientists for decades, despite model agreement on projected changes in mean state. Recent studies have provided new insights into the elusive links between changes in ENSO and in the mean state of the Pacific climate. The projected slow-down in Walker circulation is expected to weaken equatorial Pacific Ocean currents, boosting the occurrences of eastward-propagating warm surface anomalies that characterize observed extreme El Niño events. Accelerated equatorial Pacific warming, particularly in the east, is expected to induce extreme rainfall in the eastern equatorial Pacific and extreme equatorward swings of the Pacific convergence zones, both of which are features of extreme El Niño. The frequency of extreme La Niña is also expected to increase in response to more extreme El Niños, an accelerated maritime continent warming and surface-intensified ocean warming. ENSO-related catastrophic weather events are thus likely to occur more frequently with unabated greenhouse-gas emissions. But model biases and recent observed strengthening of the Walker circulation highlight the need for further testing as new models, observations and insights become available.
Resumo:
Internal gravity waves are generated as adjustment radiation whenever a sudden change in forcing causes the atmosphere to depart from its large-scale balanced state. Such a forcing anomaly occurs during a solar eclipse, when the Moon’s shadow cools part of the Earth’s surface. The resulting atmospheric gravity waves are associated with pressure and temperature perturbations, which in principle are detectable both at the surface and aloft. In this study, surface pressure and temperature data from two UK sites at Reading and Lerwick are analysed for eclipse-driven gravity-wave perturbations during the 20 March 2015 solar eclipse over north-west Europe. Radiosonde wind data from the same two sites are also analysed using a moving parcel analysis method, to determine the periodicities of the waves aloft. On this occasion, the perturbations both at the surface and aloft are found not to be confidently attributable to eclipse-driven gravity waves. We conclude that the complex synoptic weather conditions over the UK at the time of this particular eclipse helped to mask any eclipse-driven gravity waves.
Resumo:
In order to exploit the passive energy potential of the building envelope, it is important to provide a right combination of insulation thickness, heat capacity and night-time ventilation. In this paper, this issue will be tackled with reference to an historic building in Catania (Southern Italy). The building was built at the end of the XIX century, and its opaque envelope is entirely made with lava stones, which is typical of traditional architecture in this area. Starting from the current configuration of the building, many hypotheses for refurbishment are considered, combined with different strategies for passive cooling, such as night-time ventilation, use of shading devices and adoption of highly-reflective coatings. The effectiveness of each solution in terms of summer thermal comfort is evaluated through dynamic thermal simulations carried out with EnergyPlus. The results show the synergic effect of these strategies, as well as their individual impact, and allow to draw some general conclusions about the behaviour of heavyweight buildings under moderately hot weather conditions.
Resumo:
1. Dispersal is regarded as critical to the stability of existing populations and the spread of invading species, but empirical data on the effect of travelling conditions during the transfer phase are rare. We present evidence that both timing and distance of ex-natal dispersal in buzzards (Buteo buteo) are strongly affected by weather. 2. Dispersal was recorded more often when the wind changed to a more southerly direction from the more common westerly winds, and when minimum temperatures were lower. The effect of wind direction was greatest in the winter and minimum temperature was most important in the autumn. Poor weather did not appear to initiate dispersal. 3. Dispersal distance was most strongly correlated with maximum temperature during dispersal and wind direction in the following 5-day period. Combined with the sex of the buzzard these three variables accounted for 60% of the variation in dispersal distance. 4. These results are important for conservationists who manage species recovery programs and wildlife managers who model biological invasions.
Resumo:
A number of recent papers in the atmospheric science literature have suggested that a dynamical link exists between the stratosphere and troposphere. Numerical modelling studies have shown that the troposphere has a time-mean response to changes to the stratospheric climatological state. In this study the response of the troposphere to an imposed transient stratospheric change is examined. The study uses a high horizontal and vertical resolution numerical weather-prediction model. Experiments compare the tropospheric forecasts of two medium-range forecast ensembles which have identical tropospheric initial conditions and different stratospheric initial conditions. In three case studies described here, stratospheric initial conditions have a statistically significant impact on the tropospheric flow. The mechanism for this change involves, in its most basic step, a change to tropospheric synoptic-scale systems. A consistent change to the tropospheric synoptic-scale systems occurs in response to the stratospheric initial conditions. The aggregated impact of changes to individual synoptic systems maps strongly onto the structure of the Arctic Oscillation, particularly over the North Atlantic storm track. The relationship between the stratosphere and troposphere, while apparent in Arctic Oscillation diagnostics, does not occur on coherent, hemispheric scales.
Resumo:
Snow in the UK is generally associated with synoptic or mesoscale weather systems, thus snowfall during quiescent anticyclonic conditions is surprising and might not even be forecast. Consequently it could present a hazard. Snowfall during anticyclonic freezing fog conditions at Didcot and Hereford in December 2006 is investigated here. These two snowfalls seem to present circumstances in which anthropogenically-produced aerosols could have provided ice nuclei within the freezing fog, and therefore might provide characteristic examples of Anthropogenic Snowfall Events (ASEs).