27 resultados para Water reduction
Resumo:
This paper presents the development of an export coefficient model to characterise the rates and sources of P export from land to water in four reservoir systems located in a semi-arid rural region in southern of Portugal. The model was developed to enable effective management of these important water resource systems under the EU Water Framework Directive. This is the first time such an approach has been fully adapted for the semi-arid systems typical of Mediterranean Europe. The sources of P loading delivered to each reservoir from its catchment were determined and scenario analysis was undertaken to predict the likely impact of catchment management strategies on the scale of rate of P loading delivered to each water body from its catchment. The results indicate the importance of farming and sewage treatment works/collective septic tanks discharges as the main contributors to the total diffuse and point source P loading delivered to the reservoirs, respectively. A reduction in the total P loading for all study areas would require control of farming practices and more efficient removal of P from human wastes prior to discharge to surface waters. The scenario analysis indicates a strategy based solely on reducing the agricultural P surplus may result in only a slow improvement in water quality, which would be unlikely to support the generation of good ecological status in reservoirs. The model application indicates that a reduction of P-inputs to the reservoirs should first focus on reducing P loading from sewage effluent discharges through the introduction of tertiary treatment (P-stripping) in all major residential areas. The fully calibrated export coefficient modelling approach transferred well to semi-arid regions, with the only significant limitation being the availability of suitable input data to drive the model. Further studies using this approach in semi-arid catchments are now needed to increase the knowledge of nutrient export behaviours in semi-arid regions.
Resumo:
Export coefficient modelling was used to model the impact of agriculture on nitrogen and phosphorus loading on the surface waters of two contrasting agricultural catchments. The model was originally developed for the Windrush catchment where the highly reactive Jurassic limestone aquifer underlying the catchment is well connected to the surface drainage network, allowing the system to be modelled using uniform export coefficients for each nutrient source in the catchment, regardless of proximity to the surface drainage network. In the Slapton catchment, the hydrological path-ways are dominated by surface and lateral shallow subsurface flow, requiring modification of the export coefficient model to incorporate a distance-decay component in the export coefficients. The modified model was calibrated against observed total nitrogen and total phosphorus loads delivered to Slapton Ley from inflowing streams in its catchment. Sensitivity analysis was conducted to isolate the key controls on nutrient export in the modified model. The model was validated against long-term records of water quality, and was found to be accurate in its predictions and sensitive to both temporal and spatial changes in agricultural practice in the catchment. The model was then used to forecast the potential reduction in nutrient loading on Slapton Ley associated with a range of catchment management strategies. The best practicable environmental option (BPEO) was found to be spatial redistribution of high nutrient export risk sources to areas of the catchment with the greatest intrinsic nutrient retention capacity.
Resumo:
Remote sensing data and digital elevation models were utilized to extract the catchment hydrological parameters and to delineate storage areas for the Ugandan Equatorial Lakes region. Available rainfall/discharge data are integrated with these morphometric data to construct a hydrological model that simulates the water balance of the different interconnected basins and enables the impact of potential management options to be examined. The total annual discharges of the basins are generally very low (less than 7% of the total annual rainfall). The basin of the shallow (5 m deep) Lake Kioga makes only a minor hydrological contribution compared with other Equatorial Lakes, because most of the overflow from Lake Victoria basin into Lake Kioga is lost by evaporation and evapotranspiration. The discharge from Lake Kioga could be significantly increased by draining the swamps through dredging and deepening certain channel reaches. Development of hydropower dams on the Equatorial Lakes will have an adverse impact on the annual water discharge downstream, including the occasional reduction of flow required for filling up to designed storage capacities and permanently increasing the surface areas of water that is exposed to evaporation. On the basis of modelling studies, alternative sites are proposed for hydropower development and water storage schemes
Resumo:
Collectively small and medium sized enterprises (SMEs) are significant energy users although many are unregulated by existing policies due to their low carbon emissions. Carbon reduction is often not a priority but smart grids may create a new opportunity. A smart grid will give electricity suppliers a picture of real-time energy flows and the opportunity for consumers to receive financial incentives for engaging in demand side management. As well as creating incentives for local carbon reduction, engaging SMEs with smart grids has potential for contributing to wider grid decarbonisation. Modelling of buildings, business activities and technology solutions is needed to identify opportunities for carbon reduction. The diversity of the SME sector complicates strategy development. SMEs are active in almost every business area and occupy the full range of property types. This paper reviews previous modelling work, exposing valuable data on floor space and energy consumption associated with different business activities. Limitations are seen with the age of this data and an inability to distinguish SME energy use. By modelling SME energy use, electrical loads are identified which could be shifted on demand, in a smart network. Initial analysis of consumption, not constrained by existing policies, identifies heating and cooling in retail and commercial offices as having potential for demand response. Hot water in hotel and catering and retail sectors may also be significant because of the energy storage potential. Areas to consider for energy efficiency schemes are also indicated.
Resumo:
Recent laboratory measurements show that absorption by the water vapour continuum in near-infrared windows may be about an order of magnitude higher than assumed in many radiation codes. The radiative impact of the continuum at visible and near-infrared wavelengths is examined for the present day and for a possible future warmer climate (with a global-mean total column water increase of 33%). The calculations use a continuum model frequently used in climate models (‘CKD’) and a continuum model where absorption is enhanced at wavelengths greater than 1 µm based on recent measurements (‘CAVIAR’). The continuum predominantly changes the partitioning between solar radiation absorbed by the surface and the atmosphere; changes in top-of-atmosphere net irradiances are smaller. The global-mean clear-sky atmospheric absorption is enhanced by 1.5 W m−2 (about 2%) and 2.8 W m−2 (about 3.5%) for CKD and CAVIAR respectively, relative to a hypothetical no-continuum case, with all-sky enhancements about 80% of these values. The continuum is, in relative terms, more important for radiation budget changes between the present day and a possible future climate. Relative to the no-continuum case, the increase in global-mean clear-sky absorption is 8% higher using CKD and almost 20% higher using CAVIAR; all-sky enhancements are about half these values. The effect of the continuum is estimated for the solar component of the water vapour feedback, the reduction in downward surface irradiance and precipitation change in a warmer world. For CKD and CAVIAR respectively, and relative to the no-continuum case, the solar component of the water vapour feedback is enhanced by about 4 and 9%, the change in clear-sky downward surface irradiance is 7 and 18% more negative, and the global-mean precipitation response decreases by 1 and 4%. There is a continued need for improved continuum measurements, especially at atmospheric temperatures and at wavelengths below 2 µm.
Resumo:
The 2e reduced anion [Mn(CO)3(iPr-DAB)]− (DAB = 1,4- diazabuta-1,3-diene, iPr = isopropyl) was shown to convert in the presence of CO2 and a small amount of water to the unstable complex [Mn(CO)3(iPr-DAB)(η1-OCO2H)] (OCO2H− = unidentate bicarbonate) that was further reductively transformed to give a stable catalytic intermediate denoted as X2, showing νs(OCO) 1672 and 1646 (sh) cm−1. The subsequent cathodic shift by ca. 650 mV in comparison to the single 2e cathodic wave of the parent [Mn(CO)3(iPr-DAB)Br] triggers the reduction of intermediate X2 and catalytic activity converting CO2 to CO. Infrared spectroelectrochemistry has revealed that the high excess of CO generated at the cathode leads to the conversion of [Mn(CO)3(iPr-DAB)]− to inactive [Mn(CO)5]−. In contrast, the five-coordinate anion [Mn(CO)3(pTol-DAB)]−(pTol = 4-tolyl) is completely inert toward both CO2 and H2O (solvolysis). This detailed spectroelectrochemical study is a further contribution to the development of sustainable electro- and photoelectrocatalysts of CO2 reduction based on abundant first-row transition metals, in particular manganese.
Resumo:
Gum arabic is widely used in the food industry as an additive, both as a thickener and an emulsifier. This study has compared the emulsification properties of two types of gums, KLTA (Acacia senegal) and GCA (Acacia seyal), both in their native/untreated forms and after exposure to high pressure (800 MPa). Further studies were undertaken to chemically modify the disulphide linkages present and to investigate the effects of their reduction on the diffusion of the carbohydrate materials. The emulsification properties of the gum samples were examined by determining the droplet size distribution in a ‘‘model’’ oil-in-water system. Results showed that high pressure treatment and chemical reduction of gums changed the emulsification properties of both gums. The high molecular weight component in arabinogalactanproteins (AGP/GP), and more ‘‘branched’’ carbohydrates present in gum arabic, may be responsible for the emulsification properties of GCA gum, indicating that the emulsification mechanisms for KLTA and GCA were different.
Resumo:
The Working Group II contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change critically reviewed and assessed tens of thousands of recent publications to inform about the assess current scientific knowledge on climate change impacts, vulnerability and adaptation. Chapter 3 of the report focuses on freshwater resources, but water issues are also prominent in other sectoral chapters and in the regional chapters of the Working Group II report as well as in various chapters of Working Group I. With this paper, the lead authors, a review editor and the chapter scientist of the freshwater chapter of the WGII AR5 wish to summarize their assessment of the most relevant risks of climate change related to freshwater systems and to show how assessment and reduction of those risks can be integrated into water management.
Resumo:
Accurate estimates of how soil water stress affects plant transpiration are crucial for reliable land surface model (LSM) predictions. Current LSMs generally use a water stress factor, β, dependent on soil moisture content, θ, that ranges linearly between β = 1 for unstressed vegetation and β = 0 when wilting point is reached. This paper explores the feasibility of replacing the current approach with equations that use soil water potential as their independent variable, or with a set of equations that involve hydraulic and chemical signaling, thereby ensuring feedbacks between the entire soil–root–xylem–leaf system. A comparison with the original linear θ-based water stress parameterization, and with its improved curvi-linear version, was conducted. Assessment of model suitability was focused on their ability to simulate the correct (as derived from experimental data) curve shape of relative transpiration versus fraction of transpirable soil water. We used model sensitivity analyses under progressive soil drying conditions, employing two commonly used approaches to calculate water retention and hydraulic conductivity curves. Furthermore, for each of these hydraulic parameterizations we used two different parameter sets, for 3 soil texture types; a total of 12 soil hydraulic permutations. Results showed that the resulting transpiration reduction functions (TRFs) varied considerably among the models. The fact that soil hydraulic conductivity played a major role in the model that involved hydraulic and chemical signaling led to unrealistic values of β, and hence TRF, for many soil hydraulic parameter sets. However, this model is much better equipped to simulate the behavior of different plant species. Based on these findings, we only recommend implementation of this approach into LSMs if great care with choice of soil hydraulic parameters is taken
Resumo:
In this pilot study water was extracted from samples of two Holocene stalagmites from Socotra Island, Yemen, and one Eemian stalagmite from southern continental Yemen. The amount of water extracted per unit mass of stalagmite rock, termed "water yield" hereafter, serves as a measure of its total water content. Based on direct correlation plots of water yields and δ18Ocalcite and on regime shift analyses, we demonstrate that for the studied stalagmites the water yield records vary systematically with the corresponding oxygen isotopic compositions of the calcite (δ18Ocalcite). Within each stalagmite lower δ18Ocalcite values are accompanied by lower water yields and vice versa. The δ18Ocalcite records of the studied stalagmites have previously been interpreted to predominantly reflect the amount of rainfall in the area; thus, water yields can be linked to drip water supply. Higher, and therefore more continuous drip water supply caused by higher rainfall rates, supports homogeneous deposition of calcite with low porosity and therefore a small fraction of water-filled inclusions, resulting in low water yields of the respective samples. A reduction of drip water supply fosters irregular growth of calcite with higher porosity, leading to an increase of the fraction of water-filled inclusions and thus higher water yields. The results are consistent with the literature on stalagmite growth and supported by optical inspection of thin sections of our samples. We propose that for a stalagmite from a dry tropical or subtropical area, its water yield record represents a novel paleo-climate proxy recording changes in drip water supply, which can in turn be interpreted in terms of associated rainfall rates.
Resumo:
Avian intestinal spirochaetosis (AIS) caused by Brachyspira spp., and notably Brachyspira pilosicoli, is common in layer flocks and reportedly of increasing incidence in broilers and broiler breeders. Disease manifests as diar- rhoea, increased feed consumption, reduced growth rates and occasional mortality in broilers and these signs are shown in layers also associated with a delayed onset of lay, reduced egg weights, faecal staining of eggshells and non-productive ovaries. Treatment with Denagard® Tiamulin has been used to protect against B. pilosicoli colonisation, persistence and clinical presentation of AIS in commercial layers, but to date there has been no de- finitive study validating efficacy. Here, we used a poultry model of B. pilosicoli infection of layers to compare the impact of three doses of Denagard® Tiamulin. Four groups of thirty 17 week old commercial pre-lay birds were all challenged with B. pilosicoli strain B2904 with three oral doses two days apart. All birds were colonised within 2 days after the final oral challenge and mild onset of clinical signs were observed thereafter. A fifth group that was unchallenged and untreated was also included for comparison as healthy birds. Five days after the final oral Brachypira challenge three groups were given Denagard® Tiamulin in drinking water made up following the manufacturer's recommendations with doses verified as 58.7 ppm, 113 ppm and 225 ppm. Weight gain body condition and the level of diarrhoea of birds infected with B. pilosicoli were improved and shedding of the organism reduced significantly (p = 0.001) following treatment with Denagard® Tiamulin irrespective of dose given. The level and duration of colonisation of organs of birds infected with B. pilosicoli was also reduced. Confirming previous findings we showed that the ileum, caeca, colon, and both liver and spleen were colonised and here we demonstrated that treatment with Denagard® Tiamulin resulted in significant reduction in the numbers of Brachyspira found in each of these sites and dramatic reduction in faecal shedding (p b 0.001) to ap- proaching zero as assessed by culture of cloacal swabs. Although the number of eggs produced per bird and the level of eggshell staining appeared unaffected, egg weights of treated birds were greater than those of untreated birds for a period of approximately two weeks following treatment. These data conclusively demonstrate the ef- fectiveness of Denagard® Tiamulin in reducing B. pilosicoli infection in laying hens.
Resumo:
Avian intestinal spirochaetosis (AIS) caused by Brachyspira spp., and notably Brachyspira pilosicoli, is common in layer flocks and reportedly of increasing incidence in broilers and broiler breeders. Disease manifests as diarrhoea,increased feed consumption, reduced growth rates and occasional mortality in broilers and these signs are shown in layers also associated with a delayed onset of lay, reduced egg weights, faecal staining of eggshells and non-productive ovaries. Treatment with Denagard® Tiamulin has been used to protect against B. pilosicoli colonisation, persistence and clinical presentation of AIS in commercial layers, but to date there has been no definitive study validating efficacy. Here, we used a poultry model of B. pilosicoli infection of layers to compare the impact of three doses of Denagard® Tiamulin. Four groups of thirty 17 week old commercial pre-lay birds were all challengedwith B. pilosicoli strain B2904with three oral doses two days apart. All birdswere colonised within 2 days after the final oral challenge and mild onset of clinical signs were observed thereafter. A fifth group that was unchallenged and untreated was also included for comparison as healthy birds. Five days after the final oral Brachypira challenge three groups were given Denagard® Tiamulin in drinking water made up following the manufacturer's recommendations with doses verified as 58.7 ppm, 113 ppm and 225 ppm. Weight gain body condition and the level of diarrhoea of birds infected with B. pilosicoli were improved and shedding of the organism reduced significantly (p = 0.001) following treatment with Denagard® Tiamulin irrespective of dose given. The level and duration of colonisation of organs of birds infected with B. pilosicoli was also reduced. Confirming previous findings we showed that the ileum, caeca, colon, and both liver and spleen were colonised and here we demonstrated that treatment with Denagard® Tiamulin resulted in significant reduction in the numbers of Brachyspira found in each of these sites and dramatic reduction in faecal shedding (p b 0.001) to approaching zero as assessed by culture of cloacal swabs. Although the number of eggs produced per bird and the level of eggshell staining appeared unaffected, egg weights of treated birds were greater than those of untreated birds for a period of approximately two weeks following treatment. These data conclusively demonstrate the effectiveness of Denagard® Tiamulin in reducing B. pilosicoli infection in laying hens.