24 resultados para Water irrigation
Resumo:
Improving plant quality and the uniformity of a crop are major objectives for growers of ornamental nursery stock. The potential to control excess vigour and to improve quality through regulated deficit irrigation (RDI) was investigated using a range of woody ornamental species. RDI regimes reduced vegetative growth consistently across different species and growing seasons. Plants adapted to reduced water supplies primarily via stomatal control, but also by osmotic adjustment when grown under the most severe RDI regimes. Only plants exposed to <= 25% of potential evapo-transpiration demonstrated any evidence of leaf injury, and the extent was slight. Growth inhibition increased as the severity of RDI increased. Improvements in quality were attained through a combination of shorter internodes and final shoot lengths, yet the number of 'formative' primary shoots remained unaffected. Compact, well-branched plants could be formed without a requirement for mid-season pruning. In addition to severity, the timing of RDI also influenced growth responses. Applying 50% ETp for 8 weeks during July-August resulted in the formation of good quality plants, which retained their shape until the following Spring. Re-positioning irrigation drippers within the pots of well-watered plants, in an attempt to induce a partial root drying (PRD) treatment, reduced growth, but not significantly. The adoption of irrigation scheduling, based on 50-100% ETp, has the potential to improve commercial crop quality across a range of ornamental species.
Resumo:
The aim of this research was to determine whether shoot growth could be regulated and plant quality improved through two controlled irrigation techniques: Regulated Deficit Irrigation (RDI) or Partial Root Drying (PRD). An additional benefit of such techniques is that they would also improve the efficiency of irrigation application and reduce the volume of water used on commercial nurseries. Results from two ornamental woody plant species (Cotinus and Forsythia) demonstrated that plant quality could be significantly improved when RDI was applied at ≤ 60% of potential evapo-transpiration (ETp). Stomatal closure and reduced leaf and internode growth rates were associated with both the RDI and PRD techniques, but reduced leaf water potential was only recorded in the RDI system. Changes in xylem sap pH and ABA concentrations were correlated with changes in shoot physiology, and thought to be generated by those roots exposed to drying soil. By adopting such controlled irrigation systems on commercial holdings it is estimated that water consumption could be reduced by 50 to 90%.
Resumo:
With the increasing frequency and magnitude of warmer days during the summer in the UK, bedding plants which were a traditional part of the urban green landscape are perceived as unsustainable and water-demanding. During recent summers when bans on irrigation have been imposed, use and sales of bedding plants have dropped dramatically having a negative financial impact on the nursery industry. Retaining bedding species as a feature in public and even private spaces in future may be conditional on them being managed in a manner that minimises their water use. Using Petunia x hybrida ‘Hurrah White’ we aimed to discover which irrigation approach was the most efficient for maintaining plants’ ornamental quality (flower numbers, size and longevity), shoot and root growth under water deficit and periods of complete water withdrawal. Plants were grown from plugs for 51 days in wooden rhizotrons (0.35 m (h) x 0.1 m (w) x 0.065 m (d)); the rhizotrons’ front comprised clear Perspex which enabled us to monitor root growth closely. Irrigation treatments were: 1. watering with the amount which constitutes 50% of container capacity by conventional surface drip-irrigation (‘50% TOP’); 2. 50% as sub-irrigation at 10 cm depth (‘50% SUB’); 3. ‘split’ irrigation: 25% as surface drip- and 25% as sub-irrigation at 15 cm depth (‘25/25 SPLIT’); 4. 25% as conventional surface drip-irrigation (‘25% TOP’). Plants were irrigated daily at 18:00 apart from days 34-36 (inclusive) when water was withdrawn for all the treatments. Plants in ‘50% SUB’ had the most flowers and their size was comparable to that of ‘50% TOP’. Differences between treatments in other ‘quality’ parameters (height, shoot number) were biologically small. There was less root growth at deeper soil surface levels for ‘50% TOP’ which indicated that irrigation methods like ‘50% SUB’ and ‘25/25 SPLIT’ and stronger water deficits encouraged deeper root growth. It is suggested that sub-irrigation at 10 cm depth with water amounts of 50% container capacity would result in the most root growth with the maximum flowering for Petunia. Leaf stomatal conductance appeared to be most sensitive to the changes in substrate moisture content in the deepest part of the soil profile, where most roots were situated.
Resumo:
CONTEXT. Rattus tanezumi is a serious crop pest within the island of Luzon, Philippines. In intensive flood-irrigated rice field ecosystems of Luzon, female R. tanezumi are known to primarily nest within the tillers of ripening rice fields and along the banks of irrigation canals. The nesting habits of R. tanezumi in complex rice–coconut cropping systems are unknown. AIMS. To identify the natal nest locations of R. tanezumi females in rice–coconut systems of the Sierra Madre Biodiversity Corridor (SMBC), Luzon, during the main breeding season to develop a management strategy that specifically targets their nesting habitat. METHODS. When rice was at the booting to ripening stage, cage-traps were placed in rice fields adjacent to coconut habitat. Thirty breeding adult R. tanezumi females were fitted with radio-collars and successfully tracked to their nest sites. KEY RESULTS. Most R. tanezumi nests (66.7%) were located in coconut groves, five nests (16.7%) were located in rice fields and five nests (16.7%) were located on the rice field edge. All nests were located above ground level and seven nests were located in coconut tree crowns. The median distance of nest sites to the nearest rice field was 22.5m. Most nest site locations had good cover of ground vegetation and understorey vegetation, but low canopy cover. Only one nest location had an understorey vegetation height of less than 20 cm. CONCLUSIONS. In the coastal lowland rice–coconut cropping systems of the SMBC, female R. tanezumi showed a preference for nesting in adjacent coconut groves. This is contrary to previous studies in intensive flood-irrigated rice ecosystems of Luzon, where the species nests mainly in the banks of irrigation canals. It is important to understand rodent breeding ecology in a specific ecosystem before implementing appropriate management strategies. IMPLICATIONS. In lowland rice–coconut cropping systems, coconut groves adjacent to rice fields should be targeted for the 20 management of R. tanezumi nest sites during the main breeding season as part of an integrated ecologically based approach to rodent pest management.
Resumo:
Models for water transfer in the crop-soil system are key components of agro-hydrological models for irrigation, fertilizer and pesticide practices. Many of the hydrological models for water transfer in the crop-soil system are either too approximate due to oversimplified algorithms or employ complex numerical schemes. In this paper we developed a simple and sufficiently accurate algorithm which can be easily adopted in agro-hydrological models for the simulation of water dynamics. We used a dual crop coefficient approach proposed by the FAO for estimating potential evaporation and transpiration, and a dynamic model for calculating relative root length distribution on a daily basis. In a small time step of 0.001 d, we implemented algorithms separately for actual evaporation, root water uptake and soil water content redistribution by decoupling these processes. The Richards equation describing soil water movement was solved using an integration strategy over the soil layers instead of complex numerical schemes. This drastically simplified the procedures of modeling soil water and led to much shorter computer codes. The validity of the proposed model was tested against data from field experiments on two contrasting soils cropped with wheat. Good agreement was achieved between measurement and simulation of soil water content in various depths collected at intervals during crop growth. This indicates that the model is satisfactory in simulating water transfer in the crop-soil system, and therefore can reliably be adopted in agro-hydrological models. Finally we demonstrated how the developed model could be used to study the effect of changes in the environment such as lowering the groundwater table caused by the construction of a motorway on crop transpiration. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Reconstructing past water availability, both as rainfall and irrigation, is important to answer questions about the way society reacts to climate and its changes and the role of irrigation in the development of social complexity. Carbon stable isotope analysis of archaeobotanical remains is a potentially valuable method for reconstructing water availability. To further define the relationship between water availability and plant carbon isotope composition and to set up baseline values for the Southern Levant, grains of experimentally grown barley and sorghum were studied. The cereal crops were grown at three stations under five different irrigation regimes in Jordan. Results indicate that a positive but weak relationship exists between irrigation regime and total water input of barley grains, but no relationship was found for sorghum. The relationship for barley is site-specific and inter-annual variation was present at Deir ‘Alla, but not at Ramtha and Khirbet as-Samra.
Resumo:
Irrigation is used frequently in potato cultivation to maximize yield, but water availability may also affect the composition of the crop, with implications for processing properties and food safety. Five varieties of potatoes, including drought-tolerant and -sensitive types, which had been grown with and without irrigation, were analyzed to show the effect of water supply on concentrations of free asparagine, other free amino acids, and sugars and on the acrylamide-forming potential of the tubers. Two varieties were also analyzed under more severe drought stress in a glasshouse. Water availability had profound effects on tuber free amino acid and sugar concentrations, and it was concluded that potato farmers should irrigate only if necessary to maintain the health and yield of the crop, because irrigation may increase the acrylamide-forming potential of potatoes. Even mild drought stress caused significant changes in composition, but these differed from those caused by more extreme drought stress. Free proline concentration, for example, increased in the field-grown potatoes of one variety from 7.02 mmol/kg with irrigation to 104.58 mmol/kg without irrigation, whereas free asparagine concentration was not affected significantly in the field but almost doubled from 132.03 to 242.26 mmol/kg in response to more severe drought stress in the glasshouse. Furthermore, the different genotypes were affected in dissimilar fashion by the same treatment, indicating that there is no single, unifying potato tuber drought stress response.
Resumo:
The idea of Sustainable Intensification comes as a response to the challenge of avoiding resources such as land, water and energy being overexploited while increasing food production for an increasing demand from a growing global population. Sustainable Intensification means that farmers need to simultaneously increase yields and sustainably use limited natural resources, such as water. Within the agricultural sector water has a number of uses including irrigation, spraying, drinking for livestock and washing (vegetables, livestock buildings). In order to achieve Sustainable Intensification measures are needed that enable policy makers and managers to inform them about the relative performance of farms as well as of possible ways to improve such performance. We provide a benchmarking tool to assess water use (relative) efficiency at a farm level, suggest pathways to improve farm level productivity by identifying best practices for reducing excessive use of water for irrigation. Data Envelopment Analysis techniques including analysis of returns to scale were used to evaluate any excess in agricultural water use of 66 Horticulture Farms based on different River Basin Catchments across England. We found that farms in the sample can reduce on average water requirements by 35% to achieve the same output (Gross Margin) when compared to their peers on the frontier. In addition, 47% of the farms operate under increasing returns to scale, indicating that farms will need to develop economies of scale to achieve input cost savings. Regarding the adoption of specific water use efficiency management practices, we found that the use of a decision support tool, recycling water and the installation of trickle/drip/spray lines irrigation system has a positive impact on water use efficiency at a farm level whereas the use of other irrigation systems such as the overhead irrigation system was found to have a negative effect on water use efficiency.
Resumo:
Groundnuts cultivated in the semiarid tropics are often exposed to water stress (mid-season and end season) and high temperature (> 34 °C) during the critical stages of flowering and pod development. This study evaluated the effects of both water stress and high temperature under field conditions at ICRISAT, India. Treatments included two irrigations (full irrigation, 100 % of crop evapotranspiration; and water stress, 40 % of crop evapotranspiration), four temperature treatments from a combination of two sowing dates and heat tunnels with mean temperatures from sowing to maturity of 26.3° (T1), 27.3° (T2), 29.0° (T3) and 29.7 °C (T4) and two genotypes TMV2 and ICGS 11. The heat tunnels were capable of raising the day temperature by > 10 °C compared to ambient. During the 20-day high-temperature treatment at flowering, mean temperatures were 33.8° (T1), 41.6° (T2), 38.7° (T3) and 43.5°C (T4). The effects of water stress and high temperature were additive and temporary for both vegetative and pod yield, and disappeared as soon as high-temperature stress was removed. Water use efficiency was significantly affected by the main effects of temperature and cultivar and not by water stress treatments. Genotypic differences for tolerance to high temperature can be attributed to differences in flowering pattern, flower number, peg-set and harvest index. It can be inferred from this study that genotypes that are tolerant to water stress are also tolerant to high temperature under field conditions. In addition, genotypes with an ability to establish greater biomass and with a significantly greater partitioning of biomass to pod yield would be suitable for sustaining higher yields in semiarid tropics with high temperature and water stress.