96 resultados para Wade, Butch
Resumo:
There are now considerable expectations that semi-distributed models are useful tools for supporting catchment water quality management. However, insufficient attention has been given to evaluating the uncertainties inherent to this type of model, especially those associated with the spatial disaggregation of the catchment. The Integrated Nitrogen in Catchments model (INCA) is subjected to an extensive regionalised sensitivity analysis in application to the River Kennet, part of the groundwater-dominated upper Thames catchment, UK The main results are: (1) model output was generally insensitive to land-phase parameters, very sensitive to groundwater parameters, including initial conditions, and significantly sensitive to in-river parameters; (2) INCA was able to produce good fits simultaneously to the available flow, nitrate and ammonium in-river data sets; (3) representing parameters as heterogeneous over the catchment (206 calibrated parameters) rather than homogeneous (24 calibrated parameters) produced a significant improvement in fit to nitrate but no significant improvement to flow and caused a deterioration in ammonium performance; (4) the analysis indicated that calibrating the flow-related parameters first, then calibrating the remaining parameters (as opposed to calibrating all parameters together) was not a sensible strategy in this case; (5) even the parameters to which the model output was most sensitive suffered from high uncertainty due to spatial inconsistencies in the estimated optimum values, parameter equifinality and the sampling error associated with the calibration method; (6) soil and groundwater nutrient and flow data are needed to reduce. uncertainty in initial conditions, residence times and nitrogen transformation parameters, and long-term historic data are needed so that key responses to changes in land-use management can be assimilated. The results indicate the general, difficulty of reconciling the questions which catchment nutrient models are expected to answer with typically limited data sets and limited knowledge about suitable model structures. The results demonstrate the importance of analysing semi-distributed model uncertainties prior to model application, and illustrate the value and limitations of using Monte Carlo-based methods for doing so. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Chlorophyll-a concentration variations are described for two major river basins in England, the Humber and the Thames and related to catchment characteristics and nutrient concentrations across a range of rural, agricultural and urban/industrial settings. For all the rivers there are strong seasonal variations, with concentrations peaking in the spring and summer time when biological activity is at its highest. However, there are large variations in the magnitude of the seasonal effects across the rivers. For the spring-summer low-flow periods, average concentrations of chlorophyll-a correlate with soluble reactive phosphor-us (SRP). Chlorophyll-a is also correlated with particulate nitrogen (PN), organic carbon (POC) and suspended sediments. However, the strongest relationships are with catchment area and flow, where two straight line relationships are observed. The results indicate the importance of residence times for determining planktonic growth within the rivers. This is also indicated by the lack of chlorophyll-a response to lowering of SRP concentrations in several of the rivers in the area due to phosphorus stripping of effluents at major sewage treatment works. A key control on chlorophyll-a concentration may be the input of canal and reservoir waters during the growing period: this too relates to issues of residence times. However, there may well be a complex series of factors influencing residence time across the catchments due to features such as inhomogeneous flow within the catchments, a fractal distribution of stream channels that leads to a distribution of residence times and differences in planktonic inoculation sources. Industrial pollution on the Aire and Calder seems to have affected the relationship of chlorophyll-a with PN and POC. The results are discussed in relation to the Water Framework Directive. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The water quality of the Pang and Lambourn, tributaries of the River Thames, in south-eastern England, is described in relation to spatial and temporal dimensions. The river waters are supplied mainly from Chalk-fed aquifer sources and are, therefore, of a calcium-bicarbonate type. The major, minor and trace element chemistry of the rivers is controlled by a combination of atmospheric and pollutant inputs from agriculture and sewage sources superimposed on a background water quality signal linked to geological sources. Water quality does not vary greatly over time or space. However. in detail, there are differences in water quality between the Pang and Lambourn and between sites along the Pang and the Lambourn. These differences reflect hydrological processes, water flow pathways and water quality input fluxes. The Pangs pattern of water quality change is more variable than that of the Lambourn. The flow hydrograph also shows both a cyclical and 'uniform pattern' characteristic of aquifer drainage with, superimposed, a series of 'flashier' spiked responses characteristic of karstic systems. The Lambourn, in contrast, shows simpler features without the 'flashier' responses, The results are discussed in relation to the newly developed UK community programme LOCAR dealing with Lowland Catchment Research. A descriptive and box model structure is provided to describe the key features of water quality variations in relation to soil, unsaturated and groundwater flows and storage both away from and close to the river.
Resumo:
Stream-water flows and in-stream nitrate and ammonium concentrations in a small (36.7 ha) Atlantic Forest catchment were simulated using the Integrated Nitrogen in CAtchments (INCA) model version 1.9.4. The catchment, at Cunha, is in the Serra do Mar State Park, SE Brazil and is nearly pristine because the nearest major conurbations, Sao Paulo and Rio, are some 450 km distant. However, intensive farming may increase nitrogen (N) deposition and there are growing pressures for urbanisation. The mean-monthly discharges and NO3-N concentration dynamics were simulated adequately for the calibration and validation periods with (simulated) loss rates of 6.55 kg.ha(-1) yr(-1) for NO3-N and 3.85 kg.ha(-1) yr(-1) for NH4-N. To investigate the effects of elevated levels of N deposition in the future, various scenarios for atmospheric deposition were simulated; the highest value corresponded to that in a highly polluted area of Atlantic Forest in Sao Paulo City. It was found that doubling the atmospheric deposition generated a 25% increase in the N leaching rate, while at levels approaching the highly polluted Sao Paulo deposition rate, five times higher than the current rate, leaching increased by 240%, which would create highly eutrophic conditions, detrimental to downstream water quality. The results indicate that the INCA model can be useful for estimating N concentration and fluxes for different atmospheric deposition rates and hydrological conditions.
Resumo:
The spatial and temporal dynamics in the stream water NO3-N concentrations in a major European river-system, the Garonne (62,700 km(2)), are described and related to variations in climate, land management, and effluent point-sources using multivariate statistics. Building on this, the Hydrologiska Byrans Vattenbalansavdelning (HBV) rainfall-runoff model and the Integrated Catchment Model of Nitrogen (INCA-N) are applied to simulate the observed flow and N dynamics. This is done to help us to understand which factors and processes control the flow and N dynamics in different climate zones and to assess the relative inputs from diffuse and point sources across the catchment. This is the first application of the linked HBV and INCA-N models to a major European river system commensurate with the largest basins to be managed tinder the Water Framework Directive. The simulations suggest that in the lowlands, seasonal patterns in the stream water NO3-N concentrations emerge and are dominated by diffuse agricultural inputs, with an estimated 75% of the river load in the lowlands derived from arable farming. The results confirm earlier European catchment studies. Namely, current semi-distrubuted catchment-scale dynamic models, which integrate variations in land cover, climate, and a simple representation of the terrestrial and in-stream N cycle, are able to simulate seasonal NO3-N patterns at large spatial (> 300 km(2)) and temporal (>= monthly) scales using available national datasets.
Resumo:
The Integrated Catchments model of Phosphorus dynamics (INCA-P) was applied to the River Lugg to determine the key factors controlling delivery of phosphorus to the main channel and to quantify the relative contribution of diffuse and point sources to the in-stream phosphorus (P) load under varying hydrological conditions. The model is able to simulate the seasonal variations and inter-annual variations in the in-stream total-phosphorus concentrations. However, difficulties in simulating diffuse inputs arise due to equifinality in the model structure and parameters. The River Lugg is split into upper and lower reaches. The upper reaches are dominated by grassland and woodland, so the patterns in the stream-water total-phosphorus concentrations are typical of diffuse source inputs; application of the model leads to estimates of the relative contribution to the in-stream P load from diffuse and point sources as 9:1. In the lower reaches, which are more intensively cultivated and urbanised, the stream-water total-phosphorus concentration dynamics are influenced more by point-sources; the simulated relative diffuse/point contribution to the in-stream P load is 1: 1. The model set-up and simulations are used to identify the key source-areas of P in the catchment, the P contribution of the Lugg to the River Wye during years with contrasting precipitation inputs, and the uptake and release of P from within-reach sediment. In addition, model scenarios are run to identify the impacts of likely P reductions at sewage treatment works on the in-stream soluble-reactive P concentrations and the suitability of this as a management option is assessed for reducing eutrophication.
Resumo:
The Integrated Catchment Model of Nitrogen (INCA-N) was applied to the Lambourn and Pang river-systems to integrate current process-knowledge and available-data to test two hypotheses and thereby determine the key factors and processes controlling the movement of nitrate at the catchment-scale in lowland, permeable river-systems: (i) that the in-stream nitrate concentrations were controlled by two end-members only: groundwater and soil-water, and (ii) that the groundwater was the key store of nitrate in these river-systems. Neither hypothesis was proved true or false. Due to equifinality in the model structure and parameters at least two alternative models provided viable explanations for the observed in-stream nitrate concentrations. One model demonstrated that the seasonal-pattern in the stream-water nitrate concentrations was controlled mainly by the mixing of ground- and soil-water inputs. An alternative model demonstrated that in-stream processes were important. It is hoped further measurements of nitrate concentrations made in the catchment soil- and ground-water and in-stream may constrain the model and help determine the correct structure, though other recent studies suggest that these data may serve only to highlight the heterogeneity of the system. Thus when making model-based assessments and forecasts it is recommend that all possible models are used, and the range of forecasts compared. In this study both models suggest that cereal production contributed approximately 50% the simulated in-stream nitrate toad in the two catchments, and the point-source contribution to the in-stream load was minimal. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The Integrated Catchment Model of Nitrogen (INCA-N) was applied to the River Lambourn, a Chalk river-system in southern England. The model's abilities to simulate the long-term trend and seasonal patterns in observed stream water nitrate concentrations from 1920 to 2003 were tested. This is the first time a semi-distributed, daily time-step model has been applied to simulate such a long time period and then used to calculate detailed catchment nutrient budgets which span the conversion of pasture to arable during the late 1930s and 1940s. Thus, this work goes beyond source apportionment and looks to demonstrate how such simulations can be used to assess the state of the catchment and develop an understanding of system behaviour. The mass-balance results from 1921, 1922, 1991, 2001 and 2002 are presented and those for 1991 are compared to other modelled and literature values of loads associated with nitrogen soil processes and export. The variations highlighted the problem of comparing modelled fluxes with point measurements but proved useful for identifying the most poorly understood inputs and processes thereby providing an assessment of input data and model structural uncertainty. The modelled terrestrial and instream mass-balances also highlight the importance of the hydrological conditions in pollutant transport. Between 1922 and 2002, increased inputs of nitrogen from fertiliser, livestock and deposition have altered the nitrogen balance with a shift from possible reduction in soil fertility but little environmental impact in 1922, to a situation of nitrogen accumulation in the soil, groundwater and instream biota in 2002. In 1922 and 2002 it was estimated that approximately 2 and 18 kg N ha(-1) yr(-1) respectively were exported from the land to the stream. The utility of the approach and further considerations for the best use of models are discussed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This contribution closes this special issue of Hydrology and Earth System Sciences concerning the assessment of nitrogen dynamics in catchments across Europe within a semi-distributed Integrated Nitrogen model for multiple source assessment in Catchments (INCA). New developments in the understanding of the factors and processes determining the concentrations and loads of nitrogen are outlined. The ability of the INCA model to simulate the hydrological and nitrogen dynamics of different European ecosystems is assessed and the results of the first scenario analyses investigating the impacts of deposition, climatic and land-use change on the nitrogen dynamics are summarised. Consideration is given as to how well the model has performed as a generic too] for describing the nitrogen dynamics of European ecosystems across Arctic, Maritime. Continental and Mediterranean climates, its role in new research initiatives and future research requirements.
Resumo:
This paper describes the results and conclusions of the INCA (Integrated Nitrogen Model for European CAtchments) project and sets the findings in the context of the ELOISE (European Land-Ocean Interaction Studies) programme. The INCA project was concerned with the development of a generic model of the major factors and processes controlling nitrogen dynamics in European river systems, thereby providing a tool (a) to aid the scientific understanding of nitrogen transport and retention in catchments and (b) for river-basin management and policy-making. The findings of the study highlight the heterogeneity of the factors and processes controlling nitrogen dynamics in freshwater systems. Nonetheless, the INCA model was able to simulate the in-stream nitrogen concentrations and fluxes observed at annual and seasonal timescales in Arctic, Continental and Maritime-Temperate regimes. This result suggests that the data requirements and structural complexity of the INCA model are appropriate to simulate nitrogen fluxes across a wide range of European freshwater environments. This is a major requirement for the production of coupled fiver-estuary-coastal shelf models for the management of our aquatic environment. With regard to river-basin management, to achieve an efficient reduction in nutrient fluxes from the land to the estuarine and coastal zone, the model simulations suggest that management options must be adaptable to the prevailing environmental and socio-economic factors in individual catchments: 'Blanket approaches' to environmental policy appear too simple. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper describes an assessment of the nitrogen and phosphorus dynamics of the River Kennet in the south east of England. The Kennet catchment (1200 km(2)) is a predominantly groundwater fed river impacted by agricultural and sewage sources of nutrient (nitrogen and phosphorus) pollution. The results from a suite of simulation models are integrated to assess the key spatial and temporal variations in the nitrogen (N) and phosphorus (P) chemistry, and the influence of changes in phosphorous inputs from a Sewage Treatment Works on the macrophyte and epiphyte growth patterns. The models used are the Export Co-efficient model, the Integrated Nitrogen in Catchments model, and a new model of in-stream phosphorus and macrophyte dynamics: the 'Kennet' model. The paper concludes with a discussion on the present state of knowledge regarding the water quality functioning, future research needs regarding environmental modelling and the use of models as management tools for large, nutrient impacted riverine systems. (C) 2003 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
A semi-distributed model, INCA, has been developed to determine the fate and distribution of nutrients in terrestrial and aquatic systems. The model simulates nitrogen and phosphorus processes in soils, groundwaters and river systems and can be applied in a semi-distributed manner at a range of scales. In this study, the model has been applied at field to sub-catchment to whole catchment scale to evaluate the behaviour of biosolid-derived losses of P in agricultural systems. It is shown that process-based models such as INCA, applied at a wide range of scales, reproduce field and catchment behaviour satisfactorily. The INCA model can also be used to generate generic information for risk assessment. By adjusting three key variables: biosolid application rates, the hydrological connectivity of the catchment and the initial P-status of the soils within the model, a matrix of P loss rates can be generated to evaluate the behaviour of the model and, hence, of the catchment system. The results, which indicate the sensitivity of the catchment to flow paths, to application rates and to initial soil conditions, have been incorporated into a Nutrient Export Risk Matrix (NERM).