18 resultados para Venus probes
Resumo:
Prebiotics are nondigestible food ingredients that encourage proliferation of selected groups of the colonic microflora, thereby altering the composition toward a more beneficial community. In the present study, the prebiotic potential of a novel galactooligosaccharide (GOS) mixture, produced by the activity of galactosyltransferases from Bifidobacterium bifidum 41171 on lactose, was assessed in vitro and in a parallel continuous randomized pig trial. In situ fluorescent hybridization with 16S rRNA-targeted probes was used to investigate changes in total bacteria, bifidobacteria, lactobacilli, bacteroides, and Clostridium histolyticum group in response to supplementing the novel GOS mixture. In a 3-stage continuous culture system, the bifidobacterial numbers for the first 2 vessels, which represented the proximal and traverse colon, increased (P < 0.05) after the addition of the oligosaccharide mixture. In addition, the oligosaccharide mixture strongly inhibited the attachment of enterohepatic Escherichia coli (P < 0.01) and Salmonella enterica serotype Typhimurium (P < 0.01) to HT29 cells. Addition of the novel mixture at 4% (wt:wt) to a commercial diet increased the density of bificlobacteria (P < 0.001) and the acetate concentration (P < 0.001), and decreased the pH (P < 0.001) compared with the control diet and the control diet supplemented with inulin, suggesting a great prebiotic potential for the novel oligosaccharide mixture. J. Nutr. 135: 1726-1731, 2005.
Resumo:
Aim: The aim of this study was to measure the gastrointestinal survival of Lactobacillus casei and its impact on the gut microflora in healthy human volunteers. Methods and Results: Twenty healthy volunteers took part in a double-blind placebo-controlled probiotic feeding study (10 fed probiotic, 10 fed placebo). The probiotic was delivered in two 65 ml aliquots of fermented milk drink (FMD) daily for 21 days at a dose of 8.6 +/- 0.1 Log(10)Lact. casei CFU ml(-1) FMD. Faecal samples were collected before, during and after FMD or placebo consumption, and important groups of faecal bacteria enumerated by fluorescent in situ hybridization (FISH) using oligonucleotide probes targeting the 16S rRNA. The fed Lact. casei was enumerated using selective nutrient agar and colony identity confirmed by pulsed field gel electrophoresis. Seven days after ingestion of FMD, the Lact. casei was recovered from faecal samples taken from the active treatment group at 7.1 +/- 0.4 Log(10) CFU g(-1) faeces (mean +/- SD, n = 9) and numbers were maintained at this level until day 21. Lact. casei persisted in six volunteers until day 28 at 5.0 +/- 0.9 Log(10) CFU g(-1) faeces (mean +/- SD, n = 6). Numbers of faecal lactobacilli increased significantly upon FMD ingestion. In addition, the numbers of bifidobacteria were higher on days 7 and 21 than on days 0 and 28 in both FMD fed and placebo fed groups. Consumption of Lact. casei had little discernible effect on other bacterial groups enumerated. Conclusions: Daily consumption of FMD enabled a probiotic Lact. casei strain to be maintained in the gastrointestinal tract of volunteers at a stable relatively high population level during the probiotic feeding period. Significance and Impact of the Study: The study has confirmed that this probiotic version of Lact. casei survives well within the human gastrointestinal tract.
Resumo:
Exopolysaccharides (EPS) isolated from two Bifidobacterium strains, one of human intestinal origin (Bifidobacterium longum subsp. longum IPLA E44) and the other from dairy origin (Bifidobacterium animalis subsp. lactis IPLA R1), were subjected to in vitro chemically simulated gastrointestinal digestion. which showed the absence of degradation of both polymers in these conditions. Polymers were then used as carbon sources in pH-controlled faecal batch cultures and compared with the non-prebiotic carbohydrate glucose and the prebiotic inulin to determine changes in the composition of faecal bacteria. A set of eight fluorescent in situ hybridisation oligonucleotide probes targeting 16S rRNA sequences was used to quantify specific groups of microorganisms. Growth of the opportunistic pathogen Clostridium histolyticum occurred with all carbohydrates tested similarly to that found in negative control cultures without added carbohydrate and was mainly attributed to the culture conditions used rather than enhancement of growth by these substrates. Polymers E44 and RI stimulated growth of Lactobacillus/Enterococcus, Bifidobacterium, and Bacteroides/Prevotella in a similar way to that seen with inulin. The EPS RI also promoted growth of the Atopobium cluster during the first 24 h of fermentation. An increase in acetic and lactic acids was found during early stages of fermentation (first 10-24 h) correlating with increases of Lactobacillus, Bifidobacterium, and Atopobium. Propionic acid concentrations increased in old cultures, which was coincident with the enrichment of Clostridium cluster IX in cultures with EPS RI and with the increases in Bacteroides in cultures with both microbial EPS (RI and E44) and inulin. The lowest acetic to propionic acid ratio was obtained for EPS E44. None of the carbohydrates tested supported the growth of microorganisms from Clostridium clusters XIVa+b and IV, results that correlate with the poor butyrate production in the presence of EPS. Thus, EPS synthesized by bifidobacteria from dairy and intestinal origins can modulate the intestinal microbiota in vitro, promoting changes in some numerically and metabolically relevant microbial populations and shifts in the production of short chain fatty acids. (C) 2009 Elsevier B.V. All rights reserved.