21 resultados para Use the resources
Resumo:
A manageable, relatively inexpensive model was constructed to predict the loss of nitrogen and phosphorus from a complex catchment to its drainage system. The model used an export coefficient approach, calculating the total nitrogen (N) and total phosphorus (P) load delivered annually to a water body as the sum of the individual loads exported from each nutrient source in its catchment. The export coefficient modelling approach permits scaling up from plot-scale experiments to the catchment scale, allowing application of findings from field experimental studies at a suitable scale for catchment management. The catchment of the River Windrush, a tributary of the River Thames, UK, was selected as the initial study site. The Windrush model predicted nitrogen and phosphorus loading within 2% of observed total nitrogen load and 0.5% of observed total phosphorus load in 1989. The export coefficient modelling approach was then validated by application in a second research basin, the catchment of Slapton Ley, south Devon, which has markedly different catchment hydrology and land use. The Slapton model was calibrated within 2% of observed total nitrogen load and 2.5% of observed total phosphorus load in 1986. Both models proved sensitive to the impact of temporal changes in land use and management on water quality in both catchments, and were therefore used to evaluate the potential impact of proposed pollution control strategies on the nutrient loading delivered to the River Windrush and Slapton Ley
Resumo:
A favoured method of assimilating information from state-of-the-art climate models into integrated assessment models of climate impacts is to use the transient climate response (TCR) of the climate models as an input, sometimes accompanied by a pattern matching approach to provide spatial information. More recent approaches to the problem use TCR with another independent piece of climate model output: the land-sea surface warming ratio (φ). In this paper we show why the use of φ in addition to TCR has such utility. Multiple linear regressions of surface temperature change onto TCR and φ in 22 climate models from the CMIP3 multi-model database show that the inclusion of φ explains a much greater fraction of the inter-model variance than using TCR alone. The improvement is particularly pronounced in North America and Eurasia in the boreal summer season, and in the Amazon all year round. The use of φ as the second metric is beneficial for three reasons: firstly it is uncorrelated with TCR in state-of-the-art climate models and can therefore be considered as an independent metric; secondly, because of its projected time-invariance, the magnitude of φ is better constrained than TCR in the immediate future; thirdly, the use of two variables is much simpler than approaches such as pattern scaling from climate models. Finally we show how using the latest estimates of φ from climate models with a mean value of 1.6—as opposed to previously reported values of 1.4—can significantly increase the mean time-integrated discounted damage projections in a state-of-the-art integrated assessment model by about 15 %. When compared to damages calculated without the inclusion of the land-sea warming ratio, this figure rises to 65 %, equivalent to almost 200 trillion dollars over 200 years.
Resumo:
Sustainable Intensification (SI) of agriculture has recently received widespread political attention, in both the UK and internationally. The concept recognises the need to simultaneously raise yields, increase input use efficiency and reduce the negative environmental impacts of farming systems to secure future food production and to sustainably use the limited resources for agriculture. The objective of this paper is to outline a policy-making tool to assess SI at a farm level. Based on the method introduced by Kuosmanen and Kortelainen (2005), we use an adapted Data Envelopment Analysis (DEA) to consider the substitution possibilities between economic value and environmental pressures generated by farming systems in an aggregated index of Eco-Efficiency. Farm level data, specifically General Cropping Farms (GCFs) from the East Anglian River Basin Catchment (EARBC), UK were used as the basis for this analysis. The assignment of weights to environmental pressures through linear programming techniques, when optimising the relative Eco-Efficiency score, allows the identification of appropriate production technologies and practices (integrating pest management, conservation farming, precision agriculture, etc.) for each farm and therefore indicates specific improvements that can be undertaken towards SI. Results are used to suggest strategies for the integration of farming practices and environmental policies in the framework of SI of agriculture. Paths for improving the index of Eco-Efficiency and therefore reducing environmental pressures are also outlined.
Resumo:
Catastrophe risk models used by the insurance industry are likely subject to significant uncertainty, but due to their proprietary nature and strict licensing conditions they are not available for experimentation. In addition, even if such experiments were conducted, these would not be repeatable by other researchers because commercial confidentiality issues prevent the details of proprietary catastrophe model structures from being described in public domain documents. However, such experimentation is urgently required to improve decision making in both insurance and reinsurance markets. In this paper we therefore construct our own catastrophe risk model for flooding in Dublin, Ireland, in order to assess the impact of typical precipitation data uncertainty on loss predictions. As we consider only a city region rather than a whole territory and have access to detailed data and computing resources typically unavailable to industry modellers, our model is significantly more detailed than most commercial products. The model consists of four components, a stochastic rainfall module, a hydrological and hydraulic flood hazard module, a vulnerability module, and a financial loss module. Using these we undertake a series of simulations to test the impact of driving the stochastic event generator with four different rainfall data sets: ground gauge data, gauge-corrected rainfall radar, meteorological reanalysis data (European Centre for Medium-Range Weather Forecasts Reanalysis-Interim; ERA-Interim) and a satellite rainfall product (The Climate Prediction Center morphing method; CMORPH). Catastrophe models are unusual because they use the upper three components of the modelling chain to generate a large synthetic database of unobserved and severe loss-driving events for which estimated losses are calculated. We find the loss estimates to be more sensitive to uncertainties propagated from the driving precipitation data sets than to other uncertainties in the hazard and vulnerability modules, suggesting that the range of uncertainty within catastrophe model structures may be greater than commonly believed.
Resumo:
Background Cognitive–behavioural therapy (CBT) for childhood anxiety disorders is associated with modest outcomes in the context of parental anxiety disorder. Objectives This study evaluated whether or not the outcome of CBT for children with anxiety disorders in the context of maternal anxiety disorders is improved by the addition of (i) treatment of maternal anxiety disorders, or (ii) treatment focused on maternal responses. The incremental cost-effectiveness of the additional treatments was also evaluated. Design Participants were randomised to receive (i) child cognitive–behavioural therapy (CCBT); (ii) CCBT with CBT to target maternal anxiety disorders [CCBT + maternal cognitive–behavioural therapy (MCBT)]; or (iii) CCBT with an intervention to target mother–child interactions (MCIs) (CCBT + MCI). Setting A NHS university clinic in Berkshire, UK. Participants Two hundred and eleven children with a primary anxiety disorder, whose mothers also had an anxiety disorder. Interventions All families received eight sessions of individual CCBT. Mothers in the CCBT + MCBT arm also received eight sessions of CBT targeting their own anxiety disorders. Mothers in the MCI arm received 10 sessions targeting maternal parenting cognitions and behaviours. Non-specific interventions were delivered to balance groups for therapist contact. Main outcome measures Primary clinical outcomes were the child’s primary anxiety disorder status and degree of improvement at the end of treatment. Follow-up assessments were conducted at 6 and 12 months. Outcomes in the economic analyses were identified and measured using estimated quality-adjusted life-years (QALYs). QALYS were combined with treatment, health and social care costs and presented within an incremental cost–utility analysis framework with associated uncertainty. Results MCBT was associated with significant short-term improvement in maternal anxiety; however, after children had received CCBT, group differences were no longer apparent. CCBT + MCI was associated with a reduction in maternal overinvolvement and more confident expectations of the child. However, neither CCBT + MCBT nor CCBT + MCI conferred a significant post-treatment benefit over CCBT in terms of child anxiety disorder diagnoses [adjusted risk ratio (RR) 1.18, 95% confidence interval (CI) 0.87 to 1.62, p = 0.29; adjusted RR CCBT + MCI vs. control: adjusted RR 1.22, 95% CI 0.90 to 1.67, p = 0.20, respectively] or global improvement ratings (adjusted RR 1.25, 95% CI 1.00 to 1.59, p = 0.05; adjusted RR 1.20, 95% CI 0.95 to 1.53, p = 0.13). CCBT + MCI outperformed CCBT on some secondary outcome measures. Furthermore, primary economic analyses suggested that, at commonly accepted thresholds of cost-effectiveness, the probability that CCBT + MCI will be cost-effective in comparison with CCBT (plus non-specific interventions) is about 75%. Conclusions Good outcomes were achieved for children and their mothers across treatment conditions. There was no evidence of a benefit to child outcome of supplementing CCBT with either intervention focusing on maternal anxiety disorder or maternal cognitions and behaviours. However, supplementing CCBT with treatment that targeted maternal cognitions and behaviours represented a cost-effective use of resources, although the high percentage of missing data on some economic variables is a shortcoming. Future work should consider whether or not effects of the adjunct interventions are enhanced in particular contexts. The economic findings highlight the utility of considering the use of a broad range of services when evaluating interventions with this client group. Trial registration Current Controlled Trials ISRCTN19762288. Funding This trial was funded by the Medical Research Council (MRC) and Berkshire Healthcare Foundation Trust and managed by the National Institute for Health Research (NIHR) on behalf of the MRC–NIHR partnership (09/800/17) and will be published in full in Health Technology Assessment; Vol. 19, No. 38.
Resumo:
Learners’ strategy use has been widely researched over the past few decades. However, studies which focus on the impact of strategy instruction on strategy use, and how far learners of different proficiency levels are able to use the strategies taught in an effective manner, are somewhat rare. The focus of this paper is the impact of writing strategy instruction on writing strategy use of a group of 12 second language learners learning to write in English for Academic Purposes classes. Stimulated recall was used to explore whether this impact differed according to the proficiency level of the students, and revealed that for both high and low proficiency learners’ strategy use developed as a result of the instruction. The implications of these findings for strategy instruction design are discussed