35 resultados para Urban Processes
Resumo:
A number of urban land-surface models have been developed in recent years to satisfy the growing requirements for urban weather and climate interactions and prediction. These models vary considerably in their complexity and the processes that they represent. Although the models have been evaluated, the observational datasets have typically been of short duration and so are not suitable to assess the performance over the seasonal cycle. The First International Urban Land-Surface Model comparison used an observational dataset that spanned a period greater than a year, which enables an analysis over the seasonal cycle, whilst the variety of models that took part in the comparison allows the analysis to include a full range of model complexity. The results show that, in general, urban models do capture the seasonal cycle for each of the surface fluxes, but have larger errors in the summer months than in the winter. The net all-wave radiation has the smallest errors at all times of the year but with a negative bias. The latent heat flux and the net storage heat flux are also underestimated, whereas the sensible heat flux generally has a positive bias throughout the seasonal cycle. A representation of vegetation is a necessary, but not sufficient, condition for modelling the latent heat flux and associated sensible heat flux at all times of the year. Models that include a temporal variation in anthropogenic heat flux show some increased skill in the sensible heat flux at night during the winter, although their daytime values are consistently overestimated at all times of the year. Models that use the net all-wave radiation to determine the net storage heat flux have the best agreement with observed values of this flux during the daytime in summer, but perform worse during the winter months. The latter could result from a bias of summer periods in the observational datasets used to derive the relations with net all-wave radiation. Apart from these models, all of the other model categories considered in the analysis result in a mean net storage heat flux that is close to zero throughout the seasonal cycle, which is not seen in the observations. Models with a simple treatment of the physical processes generally perform at least as well as models with greater complexity.
Resumo:
To optimise the placement of small wind turbines in urban areas a detailed understanding of the spatial variability of the wind resource is required. At present, due to a lack of observations, the NOABL wind speed database is frequently used to estimate the wind resource at a potential site. However, recent work has shown that this tends to overestimate the wind speed in urban areas. This paper suggests a method for adjusting the predictions of the NOABL in urban areas by considering the impact of the underlying surface on a neighbourhood scale. In which, the nature of the surface is characterised on a 1 km2 resolution using an urban morphology database. The model was then used to estimate the variability of the annual mean wind speed across Greater London at a height typical of current small wind turbine installations. Initial validation of the results suggests that the predicted wind speeds are considerably more accurate than the NOABL values. The derived wind map therefore currently provides the best opportunity to identify the neighbourhoods in Greater London at which small wind turbines yield their highest energy production. The model does not consider street scale processes, however previously derived scaling factors can be applied to relate the neighbourhood wind speed to a value at a specific rooftop site. The results showed that the wind speed predicted across London is relatively low, exceeding 4 ms-1 at only 27% of the neighbourhoods in the city. Of these sites less than 10% are within 10 km of the city centre, with the majority over 20 km from the city centre. Consequently, it is predicted that small wind turbines tend to perform better towards the outskirts of the city, therefore for cities which fit the Burgess concentric ring model, such as Greater London, ‘distance from city centre’ is a useful parameter for siting small wind turbines. However, there are a number of neighbourhoods close to the city centre at which the wind speed is relatively high and these sites can only been identified with a detailed representation of the urban surface, such as that developed in this study.
Resumo:
Cities and global climate change are closely linked: cities are where the bulk of greenhouse gas emissions take place through the consumption of fossil fuels; they are where an increasing proportion of the world’s people live; and they also generate their own climate – commonly characterized by the urban heat island. In this way, understanding the way cities affect the cycling of energy, water, and carbon to create an urban climate is a key element of climate mitigation and adaptation strategies, especially in the context of rising global temperatures and deteriorating air quality in many cities. As climate models resolve finer spatial-scales, they will need to represent those areas in which more than 50% of the world’s population already live to provide climate projections that are of greater use to planning and decision-making. Finally, many of the processes that are instrumental in determining urban climate are the same factors leading to global anthropogenic climate change, namely regional-scale land-use changes; increased energy use; and increased emissions of climatically-relevant atmospheric constituents. Cities are therefore both a case study for understanding, and an agent in mitigating, anthropogenic climate change. This chapter reviews and summarizes the current state of understanding of the physical basis of urban climates, as well as our ability to represent these in models. We argue that addressing the challenges of managing urban environments in a changing climate requires understanding the energy, water, and carbon balances for an urban landscape and, importantly, their interactions and feedbacks, together with their links to human behaviour and controls. We conclude with some suggestions for where further research is needed.
Resumo:
To bridge the gaps between traditional mesoscale modelling and microscale modelling, the National Center for Atmospheric Research, in collaboration with other agencies and research groups, has developed an integrated urban modelling system coupled to the weather research and forecasting (WRF) model as a community tool to address urban environmental issues. The core of this WRF/urban modelling system consists of the following: (1) three methods with different degrees of freedom to parameterize urban surface processes, ranging from a simple bulk parameterization to a sophisticated multi-layer urban canopy model with an indoor–outdoor exchange sub-model that directly interacts with the atmospheric boundary layer, (2) coupling to fine-scale computational fluid dynamic Reynolds-averaged Navier–Stokes and Large-Eddy simulation models for transport and dispersion (T&D) applications, (3) procedures to incorporate high-resolution urban land use, building morphology, and anthropogenic heating data using the National Urban Database and Access Portal Tool (NUDAPT), and (4) an urbanized high-resolution land data assimilation system. This paper provides an overview of this modelling system; addresses the daunting challenges of initializing the coupled WRF/urban model and of specifying the potentially vast number of parameters required to execute the WRF/urban model; explores the model sensitivity to these urban parameters; and evaluates the ability of WRF/urban to capture urban heat islands, complex boundary-layer structures aloft, and urban plume T&D for several major metropolitan regions. Recent applications of this modelling system illustrate its promising utility, as a regional climate-modelling tool, to investigate impacts of future urbanization on regional meteorological conditions and on air quality under future climate change scenarios. Copyright © 2010 Royal Meteorological Society
Resumo:
The mean wind direction within an urban canopy changes with height when the incoming flow is not orthogonal to obstacle faces. This wind-turning effect is induced by complex processes and its modelling in urban-canopy (UC) parametrizations is difficult. Here we focus on the analysis of the spatially-averaged flow properties over an aligned array of cubes and their variation with incoming wind direction. For this purpose, Reynolds-averaged Navier–Stokes simulations previously compared, for a reduced number of incident wind directions, against direct numerical simulation results are used. The drag formulation of a UCparametrization ismodified and different drag coefficients are tested in order to reproduce the wind-turning effect within the canopy for oblique wind directions. The simulations carried out for a UC parametrization in one-dimensional mode indicate that a height-dependent drag coefficient is needed to capture this effect.
Resumo:
Urbanization related alterations to the surface energy balance impact urban warming (‘heat islands’), the growth of the boundary layer, and many other biophysical processes. Traditionally, in situ heat flux measures have been used to quantify such processes, but these typically represent only a small local-scale area within the heterogeneous urban environment. For this reason, remote sensing approaches are very attractive for elucidating more spatially representative information. Here we use hyperspectral imagery from a new airborne sensor, the Operative Modular Imaging Spectrometer (OMIS), along with a survey map and meteorological data, to derive the land cover information and surface parameters required to map spatial variations in turbulent sensible heat flux (QH). The results from two spatially-explicit flux retrieval methods which use contrasting approaches and, to a large degree, different input data are compared for a central urban area of Shanghai, China: (1) the Local-scale Urban Meteorological Parameterization Scheme (LUMPS) and (2) an Aerodynamic Resistance Method (ARM). Sensible heat fluxes are determined at the full 6 m spatial resolution of the OMIS sensor, and at lower resolutions via pixel aggregation and spatial averaging. At the 6 m spatial resolution, the sensible heat flux of rooftop dominated pixels exceeds that of roads, water and vegetated areas, with values peaking at ∼ 350 W m− 2, whilst the storage heat flux is greatest for road dominated pixels (peaking at around 420 W m− 2). We investigate the use of both OMIS-derived land surface temperatures made using a Temperature–Emissivity Separation (TES) approach, and land surface temperatures estimated from air temperature measures. Sensible heat flux differences from the two approaches over the entire 2 × 2 km study area are less than 30 W m− 2, suggesting that methods employing either strategy maybe practica1 when operated using low spatial resolution (e.g. 1 km) data. Due to the differing methodologies, direct comparisons between results obtained with the LUMPS and ARM methods are most sensibly made at reduced spatial scales. At 30 m spatial resolution, both approaches produce similar results, with the smallest difference being less than 15 W m− 2 in mean QH averaged over the entire study area. This is encouraging given the differing architecture and data requirements of the LUMPS and ARM methods. Furthermore, in terms of mean study QH, the results obtained by averaging the original 6 m spatial resolution LUMPS-derived QH values to 30 and 90 m spatial resolution are within ∼ 5 W m− 2 of those derived from averaging the original surface parameter maps prior to input into LUMPS, suggesting that that use of much lower spatial resolution spaceborne imagery data, for example from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is likely to be a practical solution for heat flux determination in urban areas.
Resumo:
Urbanization, the expansion of built-up areas, is an important yet less-studied aspect of land use/land cover change in climate science. To date, most global climate models used to evaluate effects of land use/land cover change on climate do not include an urban parameterization. Here, the authors describe the formulation and evaluation of a parameterization of urban areas that is incorporated into the Community Land Model, the land surface component of the Community Climate System Model. The model is designed to be simple enough to be compatible with structural and computational constraints of a land surface model coupled to a global climate model yet complex enough to explore physically based processes known to be important in determining urban climatology. The city representation is based upon the “urban canyon” concept, which consists of roofs, sunlit and shaded walls, and canyon floor. The canyon floor is divided into pervious (e.g., residential lawns, parks) and impervious (e.g., roads, parking lots, sidewalks) fractions. Trapping of longwave radiation by canyon surfaces and solar radiation absorption and reflection is determined by accounting for multiple reflections. Separate energy balances and surface temperatures are determined for each canyon facet. A one-dimensional heat conduction equation is solved numerically for a 10-layer column to determine conduction fluxes into and out of canyon surfaces. Model performance is evaluated against measured fluxes and temperatures from two urban sites. Results indicate the model does a reasonable job of simulating the energy balance of cities.
Resumo:
The emerging discipline of urban ecology is shifting focus from ecological processes embedded within cities to integrative studies of large urban areas as biophysical-social complexes. Yet this discipline lacks a theory. Results from the Baltimore Ecosystem Study, part of the Long Term Ecological Research Network, expose new assumptions and test existing assumptions about urban ecosystems. The findings suggest a broader range of structural and functional relationships than is often assumed for urban ecological systems. We address the relationships between social status and awareness of environmental problems, and between race and environmental hazard. We present patterns of species diversity, riparian function, and stream nitrate loading. In addition, we probe the suitability of land-use models, the diversity of soils, and the potential for urban carbon sequestration. Finally, we illustrate lags between social patterns and vegetation, the biogeochemistry of lawns, ecosystem nutrient retention, and social-biophysical feedbacks. These results suggest a framework for a theory of urban ecosystems.
Resumo:
Using a water balance modelling framework, this paper analyses the effects of urban design on the water balance, with a focus on evapotranspiration and storm water. First, two quite different urban water balance models are compared: Aquacycle which has been calibrated for a suburban catchment in Canberra, Australia, and the single-source urban evapotranspiration-interception scheme (SUES), an energy-based approach with a biophysically advanced representation of interception and evapotranspiration. A fair agreement between the two modelled estimates of evapotranspiration was significantly improved by allowing the vegetation cover (leaf area index, LAI) to vary seasonally, demonstrating the potential of SUES to quantify the links between water sensitive urban design and microclimates and the advantage of comparing the two modelling approaches. The comparison also revealed where improvements to SUES are needed, chiefly through improved estimates of vegetation cover dynamics as input to SUES, and more rigorous parameterization of the surface resistance equations using local-scale suburban flux measurements. Second, Aquacycle is used to identify the impact of an array of water sensitive urban design features on the water balance terms. This analysis confirms the potential to passively control urban microclimate by suburban design features that maximize evapotranspiration, such as vegetated roofs. The subsequent effects on daily maximum air temperatures are estimated using an atmospheric boundary layer budget. Potential energy savings of about 2% in summer cooling are estimated from this analysis. This is a clear ‘return on investment’ of using water to maintain urban greenspace, whether as parks distributed throughout an urban area or individual gardens or vegetated roofs.
Energy exchange in a dense urban environment Part II: impact of spatial heterogeneity of the surface
Resumo:
The centre of cities, characterised by spatial and temporal complexity, are challenging environments for micrometeorological research. This paper considers the impact of sensor location and heterogeneity of the urban surface on flux observations in the dense city centre of London, UK. Data gathered at two sites in close vicinity, but with different measurement heights, were analysed to investigate the influence of source area characteristics on long-term radiation and turbulent heat fluxes. Combining consideration of diffuse radiation and effects of specular reflections, the non-Lambertian urban surface is found to impact the measurements of surface albedo. Comparisons of observations from the two sites reveal that turbulent heat fluxes are similar under some flow conditions. However, they mostly observe processes at different scales due to their differing measurement heights, highlighting the critical impact of siting sensors in urban areas. A detailed source area analysis is presented to investigate the surface controls influencing the energy exchanges at the different scales
Resumo:
The Surface Urban Energy and Water Balance Scheme (SUEWS) is developed to include snow. The processes addressed include accumulation of snow on the different urban surface types: snow albedo and density aging, snow melting and re-freezing of meltwater. Individual model parameters are assessed and independently evaluated using long-term observations in the two cold climate cities of Helsinki and Montreal. Eddy covariance sensible and latent heat fluxes and snow depth observations are available for two sites in Montreal and one in Helsinki. Surface runoff from two catchments (24 and 45 ha) in Helsinki and snow properties (albedo and density) from two sites in Montreal are also analysed. As multiple observation sites with different land-cover characteristics are available in both cities, model development is conducted independent of evaluation. The developed model simulates snowmelt related runoff well (within 19% and 3% for the two catchments in Helsinki when there is snow on the ground), with the springtime peak estimated correctly. However, the observed runoff peaks tend to be smoother than the simulated ones, likely due to the water holding capacity of the catchments and the missing time lag between the catchment and the observation point in the model. For all three sites the model simulates the timing of the snow accumulation and melt events well, but underestimates the total snow depth by 18–20% in Helsinki and 29–33% in Montreal. The model is able to reproduce the diurnal pattern of net radiation and turbulent fluxes of sensible and latent heat during cold snow, melting snow and snow-free periods. The largest model uncertainties are related to the timing of the melting period and the parameterization of the snowmelt. The results show that the enhanced model can simulate correctly the exchange of energy and water in cold climate cities at sites with varying surface cover.
Resumo:
Observations of atmospheric conditions and processes in citiesare fundamental to understanding the interactions between the urban surface and weather/climate, improving the performance of urban weather, air quality and climate models, and providing key information for city end-users (e.g. decision-makers, stakeholders, public). In this paper, Shanghai's urban integrated meteorological observation network (SUIMON) and some examples of intended applications are introduced. Its characteristics include being: multi- purpose (e.g. forecast, research, service), multi-function (high impact weather, city climate, special end-users), multi-scale (e.g. macro/meso-, urban-, neighborhood, street canyon), multi-variable (e.g. thermal, dynamic, chemical, bio-meteorological, ecological), and multi- platform (e.g. radar, wind profiler, ground-based, satellite based, in-situ observation/ sampling). Underlying SUIMON is a data management system to facilitate exchange of data and information. The overall aim of the network is to improve coordination strategies and instruments; to identify data gaps based on science and user driven requirements; and to intelligently combine observations from a variety of platforms by using a data assimilation system that is tuned to produce the best estimate of the current state of the urban atmosphere.
Resumo:
Seven catchments of diverse size in Mediterranean Europe were investigated in order to understand the main aspects of their hydrological functioning. The methods included the analysis of daily and monthly precipitation, monthly potential evapotranspiration rates, flow duration curves, rainfall runoff relationships and catchment internal data for the smaller and more instrumented catchments. The results showed that the catchments were less dry than initially considered. Only one of them was really semi-arid throughout the year. All the remaining catchments showed wet seasons when precipitation exceeded potential evapotrans-piration, allowing aquifer recharge, wet runoff generation mechanisms and relevant baseflow contribution. Nevertheless, local infiltration excess (Hortonian) overland flow was inferred during summer storms in some catchments and urban overland flow in some others. The roles of karstic groundwater, human disturbance and low winter temperatures were identified as having an important impact on the hydrological regime in some of the catchments.
Resumo:
It has long been known that the urban surface energy balance is different to that of a rural surface, and that heating of the urban surface after sunset gives rise to the Urban Heat Island (UHI). Less well known is how flow and turbulence structure above the urban surface are changed during different phases of the urban boundary layer (UBL). This paper presents new observations above both an urban and rural surface and investigates how much UBL structure deviates from classical behaviour. A 5-day, low wind, cloudless, high pressure period over London, UK, was chosen for analysis, during which there was a strong UHI. Boundary layer evolution for both sites was determined by the diurnal cycle in sensible heat flux, with an extended decay period of approximately 4 h for the convective UBL. This is referred to as the “Urban Convective Island” as the surrounding rural area was already stable at this time. Mixing height magnitude depended on the combination of regional temperature profiles and surface temperature. Given the daytime UHI intensity of 1.5∘C, combined with multiple inversions in the temperature profile, urban and rural mixing heights underwent opposite trends over the period, resulting in a factor of three height difference by the fifth day. Nocturnal jets undergoing inertial oscillations were observed aloft in the urban wind profile as soon as the rural boundary layer became stable: clear jet maxima over the urban surface only emerged once the UBL had become stable. This was due to mixing during the Urban Convective Island reducing shear. Analysis of turbulent moments (variance, skewness and kurtosis) showed “upside-down” boundary layer characteristics on some mornings during initial rapid growth of the convective UBL. During the “Urban Convective Island” phase, turbulence structure still resembled a classical convective boundary layer but with some influence from shear aloft, depending on jet strength. These results demonstrate that appropriate choice of Doppler lidar scan patterns can give detailed profiles of UBL flow. Insights drawn from the observations have implications for accuracy of boundary conditions when simulating urban flow and dispersion, as the UBL is clearly the result of processes driven not only by local surface conditions but also regional atmospheric structure.
Resumo:
It is becoming increasingly important that we can understand and model flow processes in urban areas. Applications such as weather forecasting, air quality and sustainable urban development rely on accurate modelling of the interface between an urban surface and the atmosphere above. This review gives an overview of current understanding of turbulence generated by an urban surface up to a few building heights, the layer called the roughness sublayer (RSL). High quality datasets are also identified which can be used in the development of suitable parameterisations of the urban RSL. Datasets derived from physical and numerical modelling, and full-scale observations in urban areas now exist across a range of urban-type morphologies (e.g. street canyons, cubes, idealised and realistic building layouts). Results show that the urban RSL depth falls within 2 – 5 times mean building height and is not easily related to morphology. Systematic perturbations away from uniform layouts (e.g. varying building heights) have a significant impact on RSL structure and depth. Considerable fetch is required to develop an overlying inertial sublayer, where turbulence is more homogeneous, and some authors have suggested that the “patchiness” of urban areas may prevent inertial sublayers from developing at all. Turbulence statistics suggest similarities between vegetation and urban canopies but key differences are emerging. There is no consensus as to suitable scaling variables, e.g. friction velocity above canopy vs. square root of maximum Reynolds stress, mean vs. maximum building height. The review includes a summary of existing modelling practices and highlights research priorities.