67 resultados para Unfolded protein response
Resumo:
The aims were to examine ovarian expression of bone morphogenetic protein (BMP) ligands/receptor mRNAs in the chicken and to test the hypothesis that theca-derived BMP(s) modulates granulosa cell function in a paracrine manner. RT-PCR revealed expression of multiple BMPs in granulosa and theca cells from prehierarchical and preovulatory follicles with greater expression in theca cells; both cell types expressed BMP receptors-1A, -1B and -II consistent with tissue responsiveness. Preovulatory granulosa cells F1, F2 and F3/4) were cultured with BMP-6 (expressed by theca but not granulosa) in the presence/absence of LH, FSH or 8-Br-cAMP. RMP-6 increased 'basal' and gonadotrophin-induced inhibin-A and progesterone secretion by each cell type but did not enhance the effect of 8-Br-cAMP. This indicates that the observed synergism between BMP-6 and gonadotrophin might involve BMP-induced up-regulation of gonadotrophin receptors. In support of this, BMP-6 alone increased LH-receptor (LHR) mRNA in F1 cells and FSH-receptor (FSHR) mRNA in F1, F2 and F3/4 cells. RMP-6 also enhanced LH/FSH-induced LHR transcript amount in each cell type but did not raise FSHR transcript amounts above those induced by BMP-6 alone. To further explore BMP6 action on inhibin-A secretion, we quantified inhibin/activin subunits (alpha, beta(A), beta(B)) mRNAs. Consistent with its effect on inhibin-A secretion, BMP-6 enhanced 'basal' expression of alpha- and beta(A)-Subunit mRNA in F1, F2 and F3/4 cells, and beta(B)-subunit mRNA in F3/4 cells. BMP-6 markedly enhanced FSH/LH-induced expression of alpha-subunit in all follicles and FSH-induced beta(A)-subunit in F2 and F3/4 follicles but not in F1 follicles. Neither BMP-6 alone, nor FSH/LH alone, affected 'basal' OB mRNA abundance. However, co-treatment with gonadotrophin and BMP-6 greatly increased beta(B)-subunit expression, the response being lowest in F1 follicles and greatest in F3/4 follicles. Collectively, these results support the hypothesis that intra-ovarian OMPs of thecal origin have a paracrine role in modulating granulosa cell function in the chicken in a preovulatory stage-dependent manner.
Resumo:
Resistance to human skin innate defenses is crucial for survival and carriage of Staphylococcus aureus, a common cutaneous pathogen and nasal colonizer. Free fatty acids extracted from human skin sebum possess potent antimicrobial activity against S. aureus. The mechanisms by which S. aureus overcomes this host defense during colonization remain unknown. Here, we show that S. aureus IsdA, a surface protein produced in response to the host, decreases bacterial cellular hydrophobicity rendering them resistant to bactericidal human skin fatty acids and peptides. IsdA is required for survival of S. aureus on live human skin. Reciprocally, skin fatty acids prevent the production of virulence determinants and the induction of antibiotic resistance in S. aureus and other Gram-positive pathogens. A purified human skin fatty acid was effective in treating systemic and topical infections of S. aureus suggesting that our natural defense mechanisms can be exploited to combat drug-resistant pathogens.
Resumo:
Many viruses, including human influenza A virus, have developed strategies for counteracting the host type I interferon (IFN) response. We have explored whether avian influenza viruses were less capable of combating the type I IFN response in mammalian cells, as this might be a determinant of host range restriction. A panel of avian influenza viruses isolated between 1927 and 1997 was assembled. The selected viruses showed variation in their ability to activate the expression of a reporter gene under the control of the IFN-beta promoter and in the levels of IFN induced in mammalian cells. Surprisingly, the avian NS1 proteins expressed alone or in the genetic background of a human influenza virus controlled IFN-beta induction in a manner similar to the NS1 protein of human strains. There was no direct correlation between the IFN-beta induction and replication of avian influenza viruses in human A549 cells. Nevertheless, human cells deficient in the type I IFN system showed enhanced replication of the avian viruses studied, implying that the human type I IFN response limits avian influenza viruses and can contribute to host range restriction.
Resumo:
Protein oxidation within cells exposed to oxidative free radicals has been reported to occur in an uninhibited manner with both hydroxyl and peroxyl radicals. In contrast, THP-1 cells exposed to peroxyl radicals (ROO center dot) generated by thermo decomposition of the azo compound AAPH showed a distinct lag phase of at least 6 h, during which time no protein oxidation or cell death was observed. Glutathione appears to be the source of the lag phase as cellular levels were observed to rapidly decrease during this period. Removal of glutathione with buthionine sulfoxamine eliminated the lag phase. At the end of the lag phase there was a rapid loss of cellular MTT reducing activity and the appearance of large numbers of propidium iodide/annexin-V staining necrotic cells with only 10% of the cells appearing apoptotic (annexin-V staining only). Cytochrome c was released into the cytoplasm after 12 h of incubation but no increase in caspase-3 activity was found at any time points. We propose that the rapid loss of glutathione caused by the AAPH peroxyl radicals resulted in the loss of caspase activity and the initiation of protein oxidation. The lack of caspase-3 activity appears to have caused the cells to undergo necrosis in response to protein oxidation and other cellular damage. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND: The bacterial biothreat agents Burkholderia mallei and Burkholderia pseudomallei are the cause of glanders and melioidosis, respectively. Genomic and epidemiological studies have shown that B. mallei is a recently emerged, host restricted clone of B. pseudomallei. RESULTS: Using bacteriophage-mediated immunoscreening we identified genes expressed in vivo during experimental equine glanders infection. A family of immunodominant antigens were identified that share protein domain architectures with hemagglutinins and invasins. These have been designated Burkholderia Hep_Hag autotransporter (BuHA) proteins. A total of 110/207 positive clones (53%) of a B. mallei expression library screened with sera from two infected horses belonged to this family. This contrasted with 6/189 positive clones (3%) of a B. pseudomallei expression library screened with serum from 21 patients with culture-proven melioidosis. CONCLUSION: Members of the BuHA proteins are found in other Gram-negative bacteria and have been shown to have important roles related to virulence. Compared with other bacterial species, the genomes of both B. mallei and B. pseudomallei contain a relative abundance of this family of proteins. The domain structures of these proteins suggest that they function as multimeric surface proteins that modulate interactions of the cell with the host and environment. Their effect on the cellular immune response to B. mallei and their potential as diagnostics for glanders requires further study.
Resumo:
Oxidized low-density lipoproteins (LDL) play a central role in atherogenesis and induce expression of the antioxidant stress protein heme oxygenase 1 (HO-1). In the present study we investigated induction of HO-1 and adaptive increases in reduced glutathione (GSH) in human aortic smooth muscle cells (SMC) in response to moderately oxidized LDL (moxLDL, 100 mu g protein/ml, 24 h), a species containing high levels of lipid hydroperoxides. Expression and activity of HO-1 and GSH levels were elevated to a greater extent by moxLDL than highly oxidized LDL but unaffected by native or acetylated LDL. Inhibitors of protein kinase C (PKC) or mitogen-activated protein kinases (MAPK) p38(MAPK) and MEK or c-jun-NH2-terminal kinase (JNK) significantly attenuated induction of HO-1. Phosphorylation of p38(MAPK), extracellular signal-regulated kinase (ERK1/2), or JNK and nuclear translocation of the transcription factor Nrf2 were enhanced following acute exposure of SMC to rnoxLDL (100 mu g proteiri/ml, 1-2 h). Pretreatment of SMC with the antioxidant vitamin C (100 mu M, 24 h) attenuated the induction of HO-1 by moxLDL. Native and oxidized LDL did not alter basal levels of intracellular ATP, mitochondrial dehydrogenase activity, or expression of the lectin-like oxidized LDL receptor (LOX-1) in SMC. These findings demonstrate for the first time that activation of PKC, p38(MAPK), JNK, ERK1/2, and Nrf2 by oxidized LDL in human SMC leads to HO-1 induction, constituting an adaptive response against oxidative injury that can be ameliorated by vitamin C. (C) 2005 Elsevier Inc. All rights reserved.
Resumo:
Formation and rearrangement of disulfide bonds during the correct folding of nascent proteins is modulated by a family of enzymes known as thiol isomerases, which include protein disulfide isomerase (PDI), endoplasmic reticulum protein 5 (ERP5), and ERP57. Recent evidence supports an alternative role for this family of proteins on the surface of cells, where they are involved in receptor 'remodeling and recognition. In platelets, blocking PDI with inhibitory antibodies inhibits a number of platelet activation pathways, including aggregation, secretion, and fibrinogen binding. Analysis of human platelet membrane fractions identified the presence of the thiol isomerase protein ERP5. Further study showed that ERP5 is resident mainly on platelet intracellular membranes, although it is rapidly recruited to the cell, surface in response to a range of platelet agonists. Blocking cell-surface ERP5 using inhibitory antibodies leads to a decrease in platelet aggregation in response to agonists, and a decrease in fibrinogen binding and P-selectin exposure. It is Possible that this is based on the disruption of integrin function, as we observed that ERP5 becomes physically associated with the integrin beta(3) subunit during platelet stimulation. These results provide new insights into the involvement of thiol isomerases and regulation of platelet activation. (C) 2005 by The American Society of Hematology.
Resumo:
Flagellate bacteria such as Escherichia coli and Salmonella enterica serovar Typhimurium typically express 5 to 12 flagellar filaments over their cell surface that rotate in clockwise (CW) and counterclockwise directions. These bacteria modulate their swimming direction towards favorable environments by biasing the direction of flagellar rotation in response to various stimuli. In contrast, Rhodobacter sphaeroides expresses a single subpolar flagellum that rotates only CW and responds tactically by a series of biased stops and starts. Rotor protein FliG transiently links the MotAB stators to the rotor, to power rotation and also has an essential function in flagellar export. In this study, we sought to determine whether the FliG protein confers directionality on flagellar motors by testing the functional properties of R. sphaeroides FliG and a chimeric FliG protein, EcRsFliG (N-terminal and central domains of E. coli FliG fused to an R. sphaeroides FliG C terminus), in an E. coli FliG null background. The EcRsFliG chimera supported flagellar synthesis and bidirectional rotation; bacteria swam and tumbled in a manner qualitatively similar to that of the wild type and showed chemotaxis to amino acids. Thus, the FliG C terminus alone does not confer the unidirectional stop-start character of the R. sphaeroides flagellar motor, and its conformation continues to support tactic, switch-protein interactions in a bidirectional motor, despite its evolutionary history in a bacterium with a unidirectional motor.
Resumo:
The cupin superfamily of proteins, named on the basis of a conserved β-barrel fold (‘cupa’ is the Latin term for a small barrel), was originally discovered using a conserved motif found within germin and germin-like proteins from higher plants. Previous analysis of cupins had identified some 18 different functional classes that range from single-domain bacterial enzymes such as isomerases and epimerases involved in the modification of cell wall carbohydrates, through to two-domain bicupins such as the desiccation-tolerant seed storage globulins, and multidomain transcription factors including one linked to the nodulation response in legumes. Recent advances in comparative genomics, and the resolution of many more 3-D structures have now revealed that the largest subset of the cupin superfamily is the 2-oxyglutarate-Fe2+ dependent dioxygenases. The substrates for this subclass of enzyme are many and varied and in total amount to probably 50–100 different biochemical reactions, including several involved in plant growth and development. Although the majority of enzymatic cupins contain iron as an active site metal, other members contain either copper, zinc, cobalt, nickel or manganese ions as a cofactor, with each cofactor allowing a different type of chemistry to occur within the conserved tertiary structure. This review discusses the range of structures and functions found in this most diverse of superfamilies.
Resumo:
CD36 is an important scavenger receptor mediating uptake of oxidized low- density lipoproteins ( oxLDLs) and plays a key role in foam cell formation and the pathogenesis of atherosclerosis. We report the first evidence that the transcription factor Nrf2 is expressed in vascular smooth muscle cells, and demonstrate that oxLDLs cause nuclear accumulation of Nrf2 in murine macrophages, resulting in the activation of genes encoding CD36 and the stress proteins A170, heme oxygenase- 1 ( HO- 1), and peroxiredoxin I ( Prx I). 4- Hydroxy- 2- nonenal ( HNE), derived from lipid peroxidation, was one of the most effective activators of Nrf2. Using Nrf2- deficient macrophages, we established that Nrf2 partially regulates CD36 expression in response to oxLDLs, HNE, or the electrophilic agent diethylmaleate. In murine aortic smooth muscle cells, expressing negligible levels of CD36, both moderately and highly oxidized LDL caused only limited Nrf2 translocation and negligible increases in A170, HO- 1, and Prx I expression. However, treatment of smooth muscle cells with HNE significantly enhanced nuclear accumulation of Nrf2 and increased A170, HO- 1, and Prx I protein levels. Because PPAR-gamma can be activated by oxLDLs and controls expression of CD36 in macrophages, our results implicate Nrf2 as a second important transcription factor involved in the induction of the scavenger receptor CD36 and antioxidant stress genes in atherosclerosis.
Resumo:
Severe acute respiratory syndrome (SARS) coronavirus (SCoV) spike (S) protein is the major surface antigen of the virus and is responsible for receptor binding and the generation of neutralizing antibody. To investigate SCoV S protein, full-length and individual domains of S protein were expressed on the surface of insect cells and were characterized for cleavability and reactivity with serum samples obtained from patients during the convalescent phase of SARS. S protein could be cleaved by exogenous trypsin but not by coexpressed furin, suggesting that the protein is not normally processed during infection. Reactivity was evident by both flow cytometry and Western blot assays, but the pattern of reactivity varied according to assay and sequence of the antigen. The antibody response to SCoV S protein involves antibodies to both linear and conformational epitopes, with linear epitopes associated with the carboxyl domain and conformational epitopes associated with the amino terminal domain. Recombinant SCoV S protein appears to be a suitable antigen for the development of an efficient and sensitive diagnostic test for SARS, but our data suggest that assay format and choice of S antigen are important considerations.
Resumo:
We have developed a novel Hill-climbing genetic algorithm (GA) for simulation of protein folding. The program (written in C) builds a set of Cartesian points to represent an unfolded polypeptide's backbone. The dihedral angles determining the chain's configuration are stored in an array of chromosome structures that is copied and then mutated. The fitness of the mutated chain's configuration is determined by its radius of gyration. A four-helix bundle was used to optimise simulation conditions, and the program was compared with other, larger, genetic algorithms on a variety of structures. The program ran 50% faster than other GA programs. Overall, tests on 100 non-redundant structures gave comparable results to other genetic algorithms, with the Hill-climbing program running from between 20 and 50% faster. Examples including crambin, cytochrome c, cytochrome B and hemerythrin gave good secondary structure fits with overall alpha carbon atom rms deviations of between 5 and 5.6 Angstrom with an optimised hydrophobic term in the fitness function. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The increase in CVD incidence following the menopause is associated with oestrogen loss. Dietary isoflavones are thought to be cardioprotective via their oestrogenic and oestrogen receptor-independent effects, but evidence to support this role is scarce. Individual variation in response to diet may be considerable and can obscure potential beneficial effects in a sample population; in particular, the response to isoflavone treatment may vary according to genotype and equol-production status. The effects of isoflavone supplementation (50hairspmg/d) on a range of established and novel biomarkers of CVD, including markers of lipid and glucose metabolism and inflammatory biomarkers, have been investigated in a placebo-controlled 2x8-week randomised cross-over study in 117 healthy post-menopausal women. Responsiveness to isoflavone supplementation according to (1) single nucleotide polymorphisms in a range of key CVD genes, including oestrogen receptor (ER) alpha and beta and (2) equol-production status has been examined. Isoflavones supplementation was found to have no effect on markers of lipids and glucose metabolism. Isoflavones improve C-reactive protein concentrations but do not affect other plasma inflammatory markers. There are no differences in response to isoflavones according to equol-production status. However, differences in HDL-cholesterol and vascular cell adhesion molecule 1 response to isoflavones v. placebo are evident with specific ER beta genotypes. In conclusion, isoflavones have beneficial effects on C-reactive protein, but not other cardiovascular risk markers. However, specific ER beta gene polymorphic subgroups may benefit from isoflavone supplementation.
Resumo:
Emerging evidence suggests that the cellular actions of flavonoids relate not simply to their antioxidant potential but also to the modulation of protein kinase signalling pathways. We investigated in primary cortical neurons, the ability of the flavan-3-ol, (-)epicatechin, and its human metabolites at physiologically relevant concentrations, to stimulate phosphorylation of the transcription factor cAMP-response element binding protein (CREB), a regulator of neuronal viability and synaptic plasticity. (-)Epicatechin at 100-300 nmol/L stimulated a rapid, extracellular signal-regulated kinase (ERK)- and PI3K-dependent, increase in CREB phosphorylation. At micromolar concentrations, stimulation was no longer apparent and at the highest concentration tested (30 mu mol/L) (-)epicatechin was inhibitory. (-)Epicatechin also stimulated ERK and Akt phosphorylation with similar bell-shaped concentration-response characteristics. The human metabolite 3 '-O-methyl-(-)epicatechin was as effective as (-)epicatechin at stimulating ERK phosphorylation, but (-)epicatechin glucuronide was inactive. (-)Epicatechin and 3 '-O-methyl-(-)epicatechin treatments (100 nmol/L) increased CRE-luciferase activity in cortical neurons in a partially ERK-dependent manner, suggesting the potential to increase CREB-mediated gene expression. mRNA levels of the glutamate receptor subunit GluR2 increased by 60%, measured 18 h after a 15 min exposure to (-)epicatechin and this translated into an increase in GluR2 protein. Thus, (-)epicatechin has the potential to increase CREB-regulated gene expression and increase GluR2 levels and thus modulate neurotransmission, plasticity and synaptogenesis.
Resumo:
Apolipoprotein E4 (apoE4) genotype is associated with an increased risk for Alzheimer's disease (AD). This is thought to be in part attributable to an impact of apoE genotype on the processing of the transmembrane amyloid precursor protein (APP) thereby contributing to amyloid beta peptide formation in apoE4 carriers, which is a primary patho-physiological feature of AD. As apoE and alphato-copherol (alpha-toc) have been shown to modulate membrane bilayer properties and hippocampal gene expression, we studied the effect of apoE genotype on APP metabolism and cell cycle regulation in response to dietary a-toc. ApoE3 and apoE4 transgenic mice were fed a diet low (VE) or high (+VE) in vitamin E (3 and 235 mg alpha-toe/kg diet, respectively) for 12 weeks. Cholesterol levels and membrane fluidity were not different in synaptosomal plasma membranes isolated from brains of apoE3 and apoE4 mice (-VE and +VE). Non-amyloidogenic alpha-secretase mRNA concentration and activity were significantly higher in brains of apoE3 relative to apoE4 mice irrespective of the dietary a-toe supply, while amyloidogenic beta-secretase and gamma-secretase remained unchanged. Relative mRNA concentration of cell cycle related proteins were modulated differentially by dietary a-toc supplementation in apoE3 and apoE4 mice, suggesting genotype-dependent signalling effects on cell cycle regulation.