27 resultados para Ubiquitous Learning Environments
Resumo:
The 'irrelevant sound effect' in short-term memory is commonly believed to entail a number of direct consequences for cognitive performance in the office and other workplaces (e.g. S. P. Banbury, S. Tremblay, W. J. Macken, & D. M. Jones, 2001). It may also help to identify what types of sound are most suitable as auditory warning signals. However, the conclusions drawn are based primarily upon evidence from a single task (serial recall) and a single population (young adults). This evidence is reconsidered from the standpoint of different worker populations confronted with common workplace tasks and auditory environments. Recommendations are put forward for factors to be considered when assessing the impact of auditory distraction in the workplace. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
In this article, we review the state-of-the-art techniques in mining data streams for mobile and ubiquitous environments. We start the review with a concise background of data stream processing, presenting the building blocks for mining data streams. In a wide range of applications, data streams are required to be processed on small ubiquitous devices like smartphones and sensor devices. Mobile and ubiquitous data mining target these applications with tailored techniques and approaches addressing scarcity of resources and mobility issues. Two categories can be identified for mobile and ubiquitous mining of streaming data: single-node and distributed. This survey will cover both categories. Mining mobile and ubiquitous data require algorithms with the ability to monitor and adapt the working conditions to the available computational resources. We identify the key characteristics of these algorithms and present illustrative applications. Distributed data stream mining in the mobile environment is then discussed, presenting the Pocket Data Mining framework. Mobility of users stimulates the adoption of context-awareness in this area of research. Context-awareness and collaboration are discussed in the Collaborative Data Stream Mining, where agents share knowledge to learn adaptive accurate models.
Resumo:
A whole life-cycle information management vision is proposed, the organizational requirements for the realization of the scenario is investigated. Preliminary interviews with construction professionals are reported. Discontinuities at information transfer throughout life-cycle of built environments are resulting from lack of coordination and multiple data collection/storage practices. A more coherent history of these activities can improve the work practices of various teams by augmenting decision making processes and creating organizational learning opportunities. Therefore, there is a need for unifying these fragmented bits of data to create a meaningful, semantically rich and standardized information repository for built environment. The proposed vision utilizes embedded technologies and distributed building information models. Two diverse construction project types (large one-off design, small repetitive design) are investigated for the applicability of the vision. A functional prototype software/hardware system for demonstrating the practical use of this vision is developed and discussed. Plans for case-studies for validating the proposed model at a large PFI hospital and housing association projects are discussed.
Resumo:
It is reported in the literature that distances from the observer are underestimated more in virtual environments (VEs) than in physical world conditions. On the other hand estimation of size in VEs is quite accurate and follows a size-constancy law when rich cues are present. This study investigates how estimation of distance in a CAVETM environment is affected by poor and rich cue conditions, subject experience, and environmental learning when the position of the objects is estimated using an experimental paradigm that exploits size constancy. A group of 18 healthy participants was asked to move a virtual sphere controlled using the wand joystick to the position where they thought a previously-displayed virtual cube (stimulus) had appeared. Real-size physical models of the virtual objects were also presented to the participants as a reference of real physical distance during the trials. An accurate estimation of distance implied that the participants assessed the relative size of sphere and cube correctly. The cube appeared at depths between 0.6 m and 3 m, measured along the depth direction of the CAVE. The task was carried out in two environments: a poor cue one with limited background cues, and a rich cue one with textured background surfaces. It was found that distances were underestimated in both poor and rich cue conditions, with greater underestimation in the poor cue environment. The analysis also indicated that factors such as subject experience and environmental learning were not influential. However, least square fitting of Stevens’ power law indicated a high degree of accuracy during the estimation of object locations. This accuracy was higher than in other studies which were not based on a size-estimation paradigm. Thus as indirect result, this study appears to show that accuracy when estimating egocentric distances may be increased using an experimental method that provides information on the relative size of the objects used.
Resumo:
As the fidelity of virtual environments (VE) continues to increase, the possibility of using them as training platforms is becoming increasingly realistic for a variety of application domains, including military and emergency personnel training. In the past, there was much debate on whether the acquisition and subsequent transfer of spatial knowledge from VEs to the real world is possible, or whether the differences in medium during training would essentially be an obstacle to truly learning geometric space. In this paper, the authors present various cognitive and environmental factors that not only contribute to this process, but also interact with each other to a certain degree, leading to a variable exposure time requirement in order for the process of spatial knowledge acquisition (SKA) to occur. The cognitive factors that the authors discuss include a variety of individual user differences such as: knowledge and experience; cognitive gender differences; aptitude and spatial orientation skill; and finally, cognitive styles. Environmental factors discussed include: Size, Spatial layout complexity and landmark distribution. It may seem obvious that since every individual's brain is unique - not only through experience, but also through genetic predisposition that a one size fits all approach to training would be illogical. Furthermore, considering that various cognitive differences may further emerge when a certain stimulus is present (e.g. complex environmental space), it would make even more sense to understand how these factors can impact spatial memory, and to try to adapt the training session by providing visual/auditory cues as well as by changing the exposure time requirements for each individual. The impact of this research domain is important to VE training in general, however within service and military domains, guaranteeing appropriate spatial training is critical in order to ensure that disorientation does not occur in a life or death scenario.
Resumo:
This paper reports findings from six field courses about student’s perceptions of iPads as mobile learning devices for fieldwork. Data were collected through surveys and focus groups. The key findings suggest that the multi-tool nature of the iPads and their portability were the main strengths. Students had some concerns over the safety of the iPads in adverse weather and rugged environments, though most of these concerns were eliminated after using the devices with protective cases. Reduced connectivity was found to be one of the main challenges for mobile learning. Finally, students and practitioners views of why they used the mobile devices for fieldwork did not align.
Resumo:
Housing Associations (HAs) contribute circa 20% of the UK’s housing supply. HAs are however under increasing pressure as a result of funding cuts and rent reductions. Due to the increased pressure, a number of processes are currently being reviewed by HAs, especially how they manage and learn from defects. Learning from defects is considered a useful approach to achieving defect reduction within the UK housebuilding industry. This paper contributes to our understanding of how HAs learn from defects by undertaking an initial round table discussion with key HA stakeholders as part of an ongoing collaborative research project with the National House Building Council (NHBC) to better understand how house builders and HAs learn from defects to reduce their prevalence. The initial discussion shows that defect information runs through a number of groups, both internal and external of a HA during both the defects management process and organizational learning (OL) process. Furthermore, HAs are reliant on capturing and recording defect data as the foundation for the OL process. During the OL process defect data analysis is the primary enabler to recognizing a need for a change to organizational routines. When a need for change has been recognized, new options are typically pursued to design out defects via updates to a HAs Employer’s Requirements. Proposed solutions are selected by a review board and committed to organizational routine. After implementing a change, both structured and unstructured feedback is sought to establish the change’s success. The findings from the HA discussion demonstrates that OL can achieve defect reduction within the house building sector in the UK. The paper concludes by outlining a potential ‘learning from defects model’ for the housebuilding industry as well as describing future work.
Resumo:
The progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to the base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments.