67 resultados para UV-vis-NR absorbance spectrocopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two N-methylphosphonic acid derivatives of a 14-membered tetraazamacrocycle containing pyridine have been synthesized, H4L1 and H6L2. The protonation constants of these compounds and the stability constants of complexes of both ligands with Ni2+, Cu2+ and Zn2+ were determined by potentiometric methods at 298 K and ionic strength 0.10 mol dm(-3) in NMe4NO3. The high overall basicity of both compounds is ascribed to the presence of the phosphonate arms. H-1 and P-31 NMR spectroscopic titrations were performed to elucidate the sequence of protonation, which were complemented by conformational analysis studies. The complexes of these ligands have stability constants of the order of or higher than those formed with ligands having the same macrocyclic backbone but acetate arms. At pH = 7 the highest pM values were found for solutions containing the compound with three acetate groups, followed immediately by those of H6L2, however, as expected, the increasing pH favours the complexes of ligands containing phosphonate groups. The single-crystal structure of Na-2[Cu(HL1)]NO3.8H(2)O has shown that the coordination geometry around the copper atom is a distorted square pyramid. Three nitrogen atoms of the macrocyclic backbone and one oxygen atom from one methylphosphonate arm define the basal plane, and the apical coordination is accomplished via the nitrogen atom trans to the pyridine ring of the macrocycle. To achieve this geometric arrangement, the macrocycle adopts a folded conformation. This structure seems consistent with Uv-vis-NIR spectroscopy for the Ni2+ and the Cu2+ complexes and with the EPR for the latter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrochemical and spectroelectrochemical techniques were employed to study in detail the formation and so far unreported spectroscopic properties of soluble electroactive molecular chains with nonbridged metal-metal backbones, namely, [{Ru-0(CO)(PrCN)(bpy)}(m)](n) (m = 0, -1) and [{Ru-0(CO)(bpy)Cl}(m)](n) (m = -1, -2; bpy = 2,2'-bipyridine). The precursors cis-(Cl)-[Ru-II(CO)(MeCN)(bpy)Cl-2] (in PrCN) and mer-[Ru-II(CO)(bpy)Cl-3](-) (in tetrahydrofuran (THF) and PrCN) undergo one-electron reductions to reactive radicals [Ru-II(CO)(MeCN)(bpy(center dot-))Cl-2](-) and [Ru-II(CO)(bpy(center dot-))Cl-3](2-), respectively. Both [bpy(center dot-)]-containing species readily electropolymerize on concomitant dissociation of two chloride ligands and consumption of a second electron. Along this path, mer-to-fac isomerization of the bpy-reduced trichlorido complex (supported by density functional theory calculations) and a concentration-dependent oligomerization process contribute to the complex reactivity pattern. In situ spectroelectrochemistry (IR, UV/vis a has revealed that the charged polymer [{Ru-0(CO)(bpy)Cl}(-)](n) is stable in THF, but in PrCN it converts readily to [Ru-0(CO)(PrCN)(bpy)](n). An excess of chloride ions retards this substitution at low temperatures. Both polymetallic chains are completely soluble in the electrolyte solution and can be reduced reversibly to the corresponding [bpy(center dot-)]-containing species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The binding properties of dioxadiaza-([17](DBF) N2O2) and trioxadiaza- ([22](DBF)N2O3), macrocyclic ligands containing a rigid dibenzofuran group ( DBF), to metal cations and structural studies of their metal complexes have been carried out. The protonation constants of these two ligands and the stability constants of their complexes with Ca2+, Ba2+, and Mn2+, Co2+, Ni2+, Cu2+, Zn2+ and Cd2+, were determined at 298.2 K in methanol-water ( 1 : 1, v/v), and at ionic strength 0.10 mol dm(-3) in KNO3. The values of the protonation constants of both ligands are similar, indicating that no cavity size effect is observed. Only mononuclear complexes of these ligands with the divalent metal ions studied were found, and their stability constants are lower than expected, especially for the complexes of the macrocycle with smaller cavity size. However, the Cd2+ complex with [ 17]( DBF) N2O2 exhibits the highest value of stability constant for the whole series of metal ions studied, indicating that this ligand reveals a remarkable selectivity for cadmium(II) in the presence of all the metal ions studied, except copper( II), indicating that this ligand reveals a remarkable selectivity for cadmium( II) in the presence of the mentioned metal ions. The crystal structures of H-2[17](DBF)N2O32+ (diprotonated form of the ligand) and of its cadmium complex were determined by X-ray diffraction. The Cd2+ ion fits exactly inside the macrocyclic cavity exhibiting coordination number eight by coordination to all the donor atoms of the ligand, and additionally to two oxygen atoms from one nitrate anion and one oxygen atom from a water molecule. The nickel( II) and copper( II) complexes with the two ligands were further studied by UV-vis-NIR and the copper( II) complexes also by EPR spectroscopic techniques in solution indicating square-pyramidal structures and suggesting that only one nitrogen and oxygen donors of the ligands are bound to the metal. However an additional weak interaction of the second nitrogen cannot be ruled out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New dioxadiaza- and trioxadiaza-macrocycles containing one rigid dibenzofuran unit (DBF) and N-(2-aminoethyl) pendant arms were synthesized, N,N'-bis(2-aminoethyl)-[17]( DBF) N2O2 (L-1) and N,N'-bis(2-aminoethyl)-[22](DBF)N2O3 (L-2), respectively. The binding properties of both macrocycles to metal ions and structural studies of their metal complexes were carried out. The protonation constants of both compounds and the stability constants of their complexes with Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ were determined at 298.2 K, in aqueous solutions, and at ionic strength 0.10 mol dm(-3) in KNO3. Mononuclear complexes with both ligands were formed, and dinuclear complexes were only found for L-2. The thermodynamic binding affinities of the metal complexes of L-2 are lower than those of L-1 as expected, but the Pb2+ complexes of both macrocycles exhibit close stability constant values. On the other hand, the binding affinities of Cd2+ and Pb2+ for L-1 are very high, when compared to those of Co2+, Ni2+ and Zn2+. These interesting properties were explained by the presence of the rigid DBF moiety in the backbone of the macrocycle and to the special match between the macrocyclic cavity size and the studied larger metal ions. To elucidate the adopted structures of complexes in solution, the nickel(II) and copper( II) complexes with both ligands were further studied by UV-vis-MR spectroscopy in DMSO-H2O 1 : 1 (v/v) solution. The copper(II) complexes were also studied by EPR spectroscopy in the same mixture of solvents. The crystal structure of the copper complex of L-1 was also determined. The copper(II) displays an octahedral geometry, the four nitrogen atoms forming the equatorial plane and two oxygen atoms, one from the DBF unit and the other one from the ether oxygen, in axial positions. One of the ether oxygens of the macrocycle is out of the coordination sphere. Our results led us to suggest that this geometry is also adopted by the Co2+ to Zn2+ complexes, and only the larger Cd2+ and Pb2+ manage to form complexes with the involvement of all the oxygen atoms of the macrocyclic backbone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ochre samples excavated from the neolithic site at Qatalhoyuk, Turkey have been compared with "native" ochres from Clearwell Caves, UK using infrared spectroscopy backed up by Raman spectroscopy, scanning electron microscopy (with energy-dispersive X-rays (EDX) analysis), powder X-ray diffraction, diffuse reflection UV-Vis and atomic absorption spectroscopies. For the Clearwell Caves ochres, which range in colour from yellow-orange to red-brown, it is shown that the colour is related to the nature of the chromophore present and not to any differences in particle size. The darker red ochres contain predominantly haematite while the yellow ochre contains only goethite. The ochres from Qatalhoyuk contain only about one-twentieth of the levels of iron found in the Clearwell Caves ochres. The iron oxide pigment (haematite in all cases studied here) has been mixed with a soft lime plaster which also contains calcite and silicate (clay) minerals. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three di-Schiff-base ligands, N,N'-bis(salicylidene)-1,3-propanediamine (H(2)Salpn), N,N'-bis(salicylidene)-1,3-pentanedianiine (H(2)Salpen) and N,N'-bis(salicylidine)-ethylenediamine (H(2)Salen) react with Ni(SCN)(2). 4H(2)O in 2:3 molar ratios to form the complexes; mononuclear [Ni(HSalpn)(NCS)(H2O)]center dot H2O (1a), trinuclear [{Ni(Salpen)}(2)Ni(NCS)(2)] (2b) and trinuclear [{Ni(Salen)}(2)Ni(NCS)(2)] (3) respectively. All the complexes have been characterized by elemental analyses, IR and UV-VIS spectra, and room temperature magnetic susceptibility measurements. The structures of la and 2b have been confirmed by X-ray single crystal analysis. In complex la, the Ni(II) atom is coordinated equatorially by the tetradentate, mononegative Schiff-base, HSalpn. Axial coordination of isothiocyanate group and a water molecule completes its octahedral geometry. The hydrogen atom attached to one of the oxygen atoms of the Schiff base is involved in a very strong hydrogen bond with a neighboring unit to form a centrosymmetric dimer. In 2b, two square planar [Ni(Salpen)] units act as bide mate oxygen donor ligands to a central Ni(II) which is also coordinated by two mutually cis N-bonded thiocyanate ligands to complete its distorted octahedral geometry. Complex 3 possesses a similar structure to that of 2b. A dehydrated form of la and a hydrated form of 2b have been obtained and characterized. The importance of electronic and steric factors in the variation of the structures is discussed. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several cis-dioxomolybdenum complexes of two tridentate ONS chelating ligands H2L1 and H2L2 ( obtained by condensation of S-benzyl and S-methyl dithiocarbazates with 2-hydroxyacetophenone) have been prepared and characterized. Complexes 1 and 2 are found to be of the form MoO2 (CH3OH)L-1.CH3OH and MoO2L, respectively, (where L2-=dianion of H2L1 and H2L2). The sixth coordination site of the complexes acts as a binding site for various neutral monodentate Lewis bases, B, forming complexes 3 - 10 of the type MoO2LB (where B=gamma-picoline, imidazole, thiophene, THF). The complexes were characterized by elemental analyses, various spectroscopic techniques, ( UV-Vis, IR and H-1 NMR), measurement of magnetic susceptibility at room temperature, molar conductivity in solution and by cyclic voltammetry. Two of the complexes MoO2(CH3OH)L-1.CH3OH (1) and MoO2L1(imz) (5) were structurally characterized by single crystal X-ray diffraction. Oxo abstruction reactions of 1 and 5 led to formation of oxomolybdenum(IV) complex of the MoOL type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

oxovanadium(V) salicylhydroximate complexes, [VO(SHA)(H2O)]center dot 1.58H(2)O (1) and [V3O3(CSHA)(3) (H2O)(3)]center dot 3CH(3)COCH(3) (2) have been synthesized by reaction of VO43- with N-salicyl hydroxamic acid (SHAHS) and N-(5-chlorosalicyl) hydroxamic acid (CSHAH(3)), respectively, in methanol medium. Compound 1 on reaction with pyridine 2,6-dicarboxylic acid (PyDCH2) yields mononuclear complex [VO(SHAH(2))(PyDC)] (3). Treatment of compound 3 with hydrogen peroxide at low pH (2-3) and low temperature (0-5 degrees C) yields a stable oxoperoxovanadium(V) complex H[VO(O-2)(PyDC)(H2O)]center dot 2.5H(2)O (4). All four complexes (1-4) have been characterized by spectroscopic (IR, UV-Vis, V-51 NMR) and single crystal X-ray analyses. Intermolecular hydrogen bonds link complex 1 into hexanuclear clusters consisting of six {VNO5} octahedra surrounded by twelve {VNO5} octahedra to form an annular ring. While the molecular packing in 2 generates a two-dimensional framework hydrogen bonds involving the solvent acetone molecules, the mononuclear complexes 3 and 4 exhibit three-dimensional supramolecular architecture. The compounds 1 and 2 behave as good catalysts for oxygenation of benzylic, aromatic, carbocyclic and aliphatic hydrocarbons to their corresponding hydroxylated and oxygenated products using H2O2 as terminal oxidant; the process affords very good yield and turnover number. The catalysis work shows that cyclohexane is a very easily oxidizable substrate giving the highest turnover number (TON) while n-hexane and n-heptane show limited yield, longer time involvement and lesser TON than other hydrocarbons. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoinduced Fe-to-bpy charge transfer in [{Cp(dppe)Fe}-(mu-C CC N){Re(CO)(3)(bpy)}]PF6 has been observed by ps-TRIR spectroscopy, supported by UV-Vis/IR spectroelectrochemistry and DFT calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we report a new method based on supercritical carbon dioxide (scCO(2)) to fill and distribute the porous magnetic nanoparticles with n-octanol in a homogeneous manner. The high solubility of n-octanol in scCO(2) and high diffusivity and permeability of the fluid allow efficient delivery of n-octanol into the porous magnetic nanoparticles. Thus, the n-octanol-loaded magnetic nanoparticles can be readily dispersed into aqueous buffer (pH 7.40) to form a homogenous suspension consisting of nano-sized n-octanol droplets. We refer this suspension as the n-octanol stock solution. The n-octanol stock solution is then mixed with bulk aqueous phase (pH 7.40) containing an organic compound prior to magnetic separation. The small-size of the particles and the efficient mixing enable a rapid establishment of the partition equilibrium of the organic compound between the solid supported n-octanol nano-droplets and the bulk aqueous phase. UV-vis spectrophotometry is then applied to determine the concentration of the organic compound in the aqueous phase both before and after partitioning (after magnetic separation). As a result, log D values of organic compounds of pharmaceutical interest determined by this modified method are found to be in excellent agreement with the literature data. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ligands 1,4,8,11-tetraazacyclotetradecane-1,4,8-triacetic-11-methylphosphonic acid (H(5)te3a1p) and 1,4,8,11-tetraazacyclotetradecane-1,4,8-triacetic acid (H(3)te3a) were synthesized, the former one for the first time. The syntheses of these ligands were achieved from reactions on 1,4,8,11-tetraazacyclotetradecane-1,4,8-tris( carbamoylmethyl) hydroiodide (te3am center dot HI), and compounds (Hte3am)(+), 1, and (H(7)te3a1p)(2+), 4, were characterized by X-ray diffraction. Structures of two other compounds resulting from side-reactions, (H(2)te2lac)(2+), 2, and (H(4)te2a2p(OEt2))(2+), 3, were also determined by X-ray diffraction. Potentiometric titrations of H(5)te3a1p and H(3)te3a were performed at 298.2 K and ionic strength 0.10 mol dm(-3) in NMe4NO3 to determine their protonation constants. H-1 and P-31 NMR titrations of H(5)te3a1p were carried out in order to determine the very high first protonation constant of this ligand and to elucidate the sequence of protonation. Potentiometric studies of the two ligands with Ca2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Pb2+ metal ions performed in the same experimental conditions showed that the complexes of H5te3a1p present very high thermodynamic stability while complexes of H(3)te3a, particularly Co2+ and Zn2+, are even more stable. P-31 NMR spectra of the cadmium(II) complex of H(5)te3a1p showed that the phosphonate moiety was coordinated to the metal ion. The UV-vis-NIR spectroscopic data and magnetic moment values of Co2+ and Ni2+ complexes of H(5)te3a1p and H(3)te3a together with the EPR of the corresponding Cu2+ complexes indicated that all these complexes adopt distorted octahedral coordination geometries in solution. This was confirmed by the single crystal structure of [Cu-2(Hte3a)(H2O)(3)Cl]Cl-0.5(ClO4)(0.5) center dot 2H(2)O that showed two distorted octahedral copper centres bridged by a N-acetate pendant arm with a Cu center dot center dot center dot Cu distance of 4.890(1) angstrom. The first one is encapsulated into the macrocyclic cavity surrounded by four nitrogen and two oxygen donors from the macrocycle, whereas the second one is on the periphery of the macrocycle and is coordinated to two oxygen atoms of one acetate pendant arm in chelating fashion, one chloride and three water molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the search for a versatile building block that allows the preparation of heteroditopic tpy-pincer bridging ligands, the synthon 14'-[C6H3(CH2Br)(2)-3,5]-2,2':6',2 ''-terpyridine was synthesized. Facile introduction of diphenylphosphanyl groups in this synthon gave the ligand 14'-[C6H3(CH2PPh2)2-3,5]-2,2':6',2"-terpyridine) ([tpyPC(H)Pj). The asymmetric mononuclear complex [Fe(tpy){tpyPC(H)P}](PF6)(2), prepared by selective coordination of [Fe(tpy)Cl-3] to the tpy moiety of [tpyPC(H)P], was used for the synthesis of the heterodimetallic complex [Fe(tpy)(tpyPCP)Ru(tpy)](PFC,)3, which applies the "complex as ligand" approach. Coordination of the ruthenium centre at the PC(H)P-pincer moiety of [Fe(tpy){tpyPC(H)P}](PF6)(2) has been achieved by applying a transcyclometallation procedure. The ground-state electronic properties of both complexes, investigated by cyclic and square-wave voltammetries and UV/Vis spectroscopy, are discussed and compared with those of [Fe(tPY)(2)](PF6)(2) and [Ru(PCP)(tpy)]Cl, which represent the mononuclear components of the heterodinuclear species. An in situ UV/Vis spectroelectrochemical study was performed in order to localize the oxidation and reduction steps and to gain information about the Fe-II-Ru-II communication in the heterodimetallic system [Fe(tpy)(tpyPCP)Ru(tpy)](PF6)(3) mediated by the bridging ligand [tpyPCP]. Both the voltammetric and spectroelectrochemical results point to only very limited electronic interaction between the metal centres in the ground state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The new square-planar Ni-II-N2O2 complex [Ni(L-Me)] (1(Me)), where L-Me, stands for the dianionic phenolato form of N,N'bis(3,5-di-tert-butyl-salicylidene)-4,5-dimethyl-1,2-phenyl- enediamine ((LH2)-L-Me), has been synthesised and fully characterised. X-ray crystallography was also used for the characterisation. The electrochemical one-electron oxidation of 1(Me) produces the thermally stable (within the temperature range 10-295 K) cationic species (1(Me))(+). The UV/Vis and X-band EPR experimental data, supported by DFT calculations, indicate that (1(Me))(+), is best described as a Ni-II monoradical complex and, thus, does NOT exist in a Ni-III ground state, in contrast to its demethylated counterpart [Ni(L-H)](+) (1(H))(+) below 170 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of half-sandwich bis(phosphine) ruthenium acetylide complexes [Ru(C CAr)(L-2)Cp'] (Ar = phenyl, p-tolyl, 1-naphthyl, 9-anthryl; L2 = (PPh3)(2), Cp' = Cp; L-2 = dppe; Cp' = Cp*) have been examined using electrochemical and spectroelectrochemical methods. One-electron oxidation of these complexes gave the corresponding radical cations [Ru(C CAr)(L2)Cp'](+). Those cations based on Ru(dppe)Cp*, or which feature a para-tolyl acetylide substituent, are more chemically robust than examples featuring the Ru(PPh3)(2)Cp moiety, permitting good quality UV-Vis-NIR and IR spectroscopic data to be obtained using spectroelectrochemical methods. On the basis of TD DFT calculations, the low energy (NIR) absorption bands in the experimental electronic spectra for most of these radical cations are assigned to transitions between the beta-HOSO and beta-LUSO, both of which have appreciable metal d and ethynyl pi character. However, the large contribution from the anthryl moiety to the frontier orbitals of [Ru(C CC14H9)(L2)CP'](+) suggests compounds containing this moiety should be described as metal-stabilised anthryl radical cations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The syntheses and spectroscopic characterization of two 1,2,4-triazole-based oxovanadium(V) complexes are reported: 1(-)[VO(2)L1](-) and 2 [(VOL2)(2)(OMe)(2)] (where H(2)L1 = 3-(2'-hydroxyphenyl)-5-(pyridin-2"-yl)-H-1-1,2,4-triazole, H3L2 = bis-3,5-(2'-hydroxyphenyl)-1H-1,2,4-triazole). The ligand environment (N,N,O vs O,N,O) is found to have a profound influence on the properties and reactivity of the complexes formed. The presence of the triazolato ligand allows for pH tuning of the spectroscopic and electrochemical properties, as well as the interaction and stability of the complexes in the presence of hydrogen peroxide. The vanadium(IV) oxidation states were generated electrochemically and characterized by UV-vis and EPR spectroscopies, For 2, under acidic conditions, rapid exchange of the methoxide ligands with solvent [in particular, in the vanadium(IV) redox state] was observed.