40 resultados para UV-Vis absorption spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tridentate Schiff base ligand, 7-amino-4-methyl-5-aza-3-hepten-2-one (HAMAH), prepared by the mono-condensation of 1,2diaminoethane and acetylacetone, reacts with Cu(BF4)(2) center dot 6H(2)O to produce initially a dinuclear Cu(II) complex, [{Cu(AMAH)}(2) (mu-4,4'-bipyJ](BF4)(2) (1) which undergoes hydrolysis in the reaction mixture and finally produces a linear polymeric chain compound, [Cu(acac)(2)(mu-4,4'-bipy)](n) (2). The geometry around the copper atom in compound 1 is distorted square planar while that in compound 2 is essentially an elongated octahedron. On the other hand, the ligand HAMAH reacts with Cu(ClO4)(2) center dot 6H(2)O to yield a polymeric zigzag chain, [{Cu(acac)(CH3OH)(mu-4,4'-bipy)}(ClO4)](n) (3). The geometry of the copper atom in 3 is square pyramidal with the two bipyridine molecules in the cis equatorial positions. All three complexes have been characterized by elemental analysis, IR and UV-Vis spectroscopy and single crystal X-ray diffraction studies. A probable explanation for the different size and shape of the reported polynuclear complexes formed by copper(II) and 4,4'-bipyridine has been put forward by taking into account the denticity and crystal field strength of the blocking ligand as well as the Jahn-Teller effect in copper(II). (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel, pyrene-functionalised copolymer has been synthesised in a single step via imidisation of poly(maleic anhydride-alt-1-octadecene) with 1-pyrenemethylamine, and its potential for the detection of volatile nitro aromatic compounds (NACs) evaluated. The new copolymer forms complexes in solution with NACs such as 2,5-dinitrobenzonitrile, as shown by H-1 NMR, UV-vis and fluorescence spectroscopy. Moreover, thin films of this copolymer, cast from THF solution, undergo almost instantaneous fluorescence quenching when exposed to the vapour of 2,5-dinitrobenzonitrile (a model for TNT) at ambient temperatures and pressures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been great interest recently in peptide amphiphiles and block copolymers containing biomimetic peptide sequences due to applications in bionanotechnology. We investigate the self-assembly of the peptide-PEG amphiphile FFFF-PEG5000 containing the hydrophobic sequence of four phenylalanine residues conjugated to PEG of molar mass 5000. This serves as a simple model peptide amphiphile. At very low concentration, association of hydrophobic aromatic phenylalanine residues occurs, as revealed by circular dichroism and UV/vis fluorescence experiments. A critical aggregation concentration associated with the formation of hydrophobic domains is determined through pyrene fluorescence assays. At higher concentration, defined beta-sheets develop as revealed by FTIR spectroscopy and X-ray diffraction. Transmission electron microscopy reveals self-assembled straight fibril structures. These are much shorter than those observed for amyloid peptides, the finite length may be set by the end cap energy due to the hydrophobicity of phenylalanine. The combination of these techniques points to different aggregation processes depending on concentration. Hydrophobic association into irregular aggregates occurs at low concentration, well-developed beta-sheets only developing at higher concentration. Drying of FFFF-PEG5000 solutions leads to crystallization of PEG, as confirmed by polarized optical microscopy (POM), FTIR and X-ray diffraction (XRD). PEG crystallization does not disrupt local beta-sheet structure (as indicated by FTIR and XRD). However on longer lengthscales the beta-sheet fibrillar structure is perturbed because spheruilites from PEG crystallization are observed by POM. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoinduced Fe-to-bpy charge transfer in [{Cp(dppe)Fe}-(mu-C CC N){Re(CO)(3)(bpy)}]PF6 has been observed by ps-TRIR spectroscopy, supported by UV-Vis/IR spectroelectrochemistry and DFT calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an application of cavity-enhanced absorption spectroscopy with an off-axis alignment of the cavity formed by two spherical mirrors and with time integration of the cavity-output intensity for detection of nitrogen dioxide (NO2) and iodine monoxide (IO) radicals using a violet laser diode at lambda = 404.278 nm. A noise-equivalent (1sigma = root-mean-square variation of the signal) fractional absorption for one optical pass of 4.5x10(-8) was demonstrated with a mirror reflectivity of similar to0.99925, a cavity length of 0.22 m and a lock-in-amplifier time constant of 3 s. Noise-equivalent detection sensitivities towards nitrogen dioxide of 1.8x10(10) molecule cm(-3) and towards the IO radical of 3.3x10(9) molecule cm(-3) were achieved in flow tubes with an inner diameter of 4 cm for a lock-in-amplifier time constant of 3 s. Alkyl peroxy radicals were detected using chemical titration with excess nitric oxide (RO2 + NO --> RO + NO2). Measurement of oxygen-atom concentrations was accomplished by determining the depletion of NO2 in the reaction NO2 + O --> NO + O-2. Noise-equivalent concentrations of alkyl peroxy radicals and oxygen atoms were 3x10(10) molecule cm(-3) in the discharge-flow-tube experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the search for a versatile building block that allows the preparation of heteroditopic tpy-pincer bridging ligands, the synthon 14'-[C6H3(CH2Br)(2)-3,5]-2,2':6',2 ''-terpyridine was synthesized. Facile introduction of diphenylphosphanyl groups in this synthon gave the ligand 14'-[C6H3(CH2PPh2)2-3,5]-2,2':6',2"-terpyridine) ([tpyPC(H)Pj). The asymmetric mononuclear complex [Fe(tpy){tpyPC(H)P}](PF6)(2), prepared by selective coordination of [Fe(tpy)Cl-3] to the tpy moiety of [tpyPC(H)P], was used for the synthesis of the heterodimetallic complex [Fe(tpy)(tpyPCP)Ru(tpy)](PFC,)3, which applies the "complex as ligand" approach. Coordination of the ruthenium centre at the PC(H)P-pincer moiety of [Fe(tpy){tpyPC(H)P}](PF6)(2) has been achieved by applying a transcyclometallation procedure. The ground-state electronic properties of both complexes, investigated by cyclic and square-wave voltammetries and UV/Vis spectroscopy, are discussed and compared with those of [Fe(tPY)(2)](PF6)(2) and [Ru(PCP)(tpy)]Cl, which represent the mononuclear components of the heterodinuclear species. An in situ UV/Vis spectroelectrochemical study was performed in order to localize the oxidation and reduction steps and to gain information about the Fe-II-Ru-II communication in the heterodimetallic system [Fe(tpy)(tpyPCP)Ru(tpy)](PF6)(3) mediated by the bridging ligand [tpyPCP]. Both the voltammetric and spectroelectrochemical results point to only very limited electronic interaction between the metal centres in the ground state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of half-sandwich bis(phosphine) ruthenium acetylide complexes [Ru(C CAr)(L-2)Cp'] (Ar = phenyl, p-tolyl, 1-naphthyl, 9-anthryl; L2 = (PPh3)(2), Cp' = Cp; L-2 = dppe; Cp' = Cp*) have been examined using electrochemical and spectroelectrochemical methods. One-electron oxidation of these complexes gave the corresponding radical cations [Ru(C CAr)(L2)Cp'](+). Those cations based on Ru(dppe)Cp*, or which feature a para-tolyl acetylide substituent, are more chemically robust than examples featuring the Ru(PPh3)(2)Cp moiety, permitting good quality UV-Vis-NIR and IR spectroscopic data to be obtained using spectroelectrochemical methods. On the basis of TD DFT calculations, the low energy (NIR) absorption bands in the experimental electronic spectra for most of these radical cations are assigned to transitions between the beta-HOSO and beta-LUSO, both of which have appreciable metal d and ethynyl pi character. However, the large contribution from the anthryl moiety to the frontier orbitals of [Ru(C CC14H9)(L2)CP'](+) suggests compounds containing this moiety should be described as metal-stabilised anthryl radical cations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lithium salt of the anionic SPS pincer ligand composed of a central hypervalent lambda(4)-phosphinine ring bearing two ortho-positioned diphenylphosphine sulfide side arms reacts with [Mn(CO)(5)Br] to give fac-[Mn(SPS)(CO)(3)], This isomer can be converted photochemicaily to mer-[Mn(SPS)(CO)(3)], with a very high quantum yield (0.80 +/- 0.05). The thermal backreaction is slow (taking ca. 8 h at room temperature), in contrast to rapid electrodecatalyzed mer-to-fac isomerization triggered by electrochemical reduction of mer-[Mn(SPS)(CO)(3)]. Both geometric isomers of [Mn(SPS)(CO)(3)] have been characterized by X-ray crystallography. Both isomers show luminescence from a low-lying (IL)-I-3 (SPS-based) excited state. The light emission of fac-[Mn(SPS)(CO)(3)] is largely quenched by the efficient photoisomerization occurring probably from a low-lying Mn-CO dissociative excited state. Density functional theory (DFT) and time-dependent DFT calculations describe the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of fac- and mer-[Mn(CO)(3)(SPS)] as ligand-centered orbitals, largely localized on the phosphinine ring of the SPS pincer ligand. In line with the ligand nature of its frontier orbitals, fac-[Mn(SPS)(CO)(3)] is electrochemically reversibly oxidized and reduced to the corresponding radical cation and anion, respectively. The spectroscopic (electron paramagnetic resonance, IR, and UV-vis) characterization of the radical species provides other evidence for the localization of the redox steps on the SIPS ligand. The smaller HOMO-LUMO energy difference in the case of mer-[Mn(CO)(3)(SPS)], reflected in the electronic absorption and emission spectra, corresponds with its lower oxidation potential compared to that of the fac isomer. The thermodynamic instability of mer-[Mn(CO)(3)(SPS)], confirmed by the DFT calculations, increases upon one-electron reduction and oxidation of the complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lowest allowed electronic transition of fac-[Re(Cl)(CO)(3)(bopy)(2)] (bopy = 4-benzoylpyridine) has a Re --> bopy MLCT character, as revealed by UV-vis and stationary resonance Raman spectroscopy. Accordingly, the lowest-lying, long-lived, excited state is Re --> bopy (MLCT)-M-3. Electronic depopulation of the Re(CO)(3) unit and population of a bopy pi* orbital upon excitation are evident by the upward shift of v(Cequivalent toO) vibrations and a downward shift of the ketone v(C=O) vibration, respectively, seen in picosecond time-resolved IR spectra. Moreover, reduction of a single bopy ligand in the (MLCT)-M-3 excited state is indicated by time-resolved visible and resonance Raman (TR3) spectra that show features typical of bopy(.-). In contrast, the lowest allowed electronic transition and lowest-lying excited state of a new complex fac-[Re(bopy)(CO)(3)(bpy)](+) (bpy = 2,2'-bipyridine) have been identified as Re --> bpy MLCT with no involvement of the bopy ligand, despite the fact that the first reduction of this complex is bopy-localized, as was proven spectroelectrochemically. This is a rare case in which the localizations of the lowest MLCT excitation and the first reduction are different. (MLCT)-M-3 excited states of both fac-[Re(Cl)(CO)(3)(bopy)(2)] and fac-[Re(bopy)(CO)(3)(bpy)](+) are initially formed vibrationally hot. Their relaxation is manifested by picosecond dynamic shifts of v(Cequivalent toO) IR bands. The X-ray structure of fac-[Re(bopy)(CO)(3)(bpy)](PF6CH3CN)-C-. has been determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An aqueous solution of a poly(ethylene glycol)-polycaprolactone-poly(ethylene glycol) (PEG-PCL-PEG) with a composition of EG13CL23EG13 undergoes multiple transitions, from sol-to-gel (hard gel)-to-sol-to-gel (soft gel)-to-sol, in the concentration range 20.0∼35.0 wt.-%. Through dynamic mechanical analysis, UV-vis spectrophotometry, small angle X-ray scattering, differential scanning calorimetry, microcalorimetry and 13C NMR spectroscopy, the mechanism of these transitions was investigated. The hard gel and soft gel are distinguished by the crystalline and amorphous state of the PCL. The extent of PEG dehydration and the molecular motion of each block also played a critical role in the multiple transitions. This paper suggests a new mechanism for these multiple transitions driven by temperature changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two Schiff bases, HL1 and HL2 have been prepared by the condensation of N-methyl-1,3-propanediamine (mpn) with salicylaldehyde and 1-benzoylacetone (Hbn) respectively. HL1 on reaction with Cu(ClO4)(2)center dot 6H(2)O in methanol produced a trinuclear Cu-II complex, [(CuL1)(3)(mu(3)-OH)](ClO4)(2)center dot H2O center dot 0.5CH(2)Cl(2) (1) but HL2 underwent hydrolysis under similar reaction conditions to result in a ternary Cu-II complex, [Cu(bn)(mpn)ClO4]. Both complexes have been characterised by single-crystal X-ray analyses, IR and UV-Vis spectroscopy and electrochemical studies. The partial cubane core [Cu3O4] of 1 consists of a central mu(3)-OH and three peripheral phenoxo bridges from the Schiff base. All three copper atoms of the trinuclear unit are five-coordinate with a distorted square-pyramidal geometry. The ternary complex 2 is mononuclear with the square-pyramidal Cu-II coordinated by a chelating bidentate diamine (mpn) and a benzoylacetonate (bn) moiety in the equatorial plane and one of the oxygen atoms of perchlorate in an axial position. The results show that the Schiff base (HL2) derived from 1-benzoylacetone is more prone to hydrolysis than that from salicylaldehyde (HL1). Magnetic measurements of 1 have been performed in the 1.8-300 K temperature range. The experimental data clearly indicate antiferromagnetism in the complex. The best-fit parameters for complex 1 are g = 2.18(1) and J = -15.4(2) cm(-1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three new trinuclear copper(II) complexes, [(CuL1)(3)(mu(3)-OH)](ClO4)(2)center dot 3.75H(2)O (1), [(CuL2)(3)(mu(3)-OH)](ClO4)(2) (2) and [(CuL3)(3)(mu(3)-OH)](BF4)(2)center dot 0.5CH(3)CN (3) have been synthesized from three tridentate Schiff bases HL1, HL2, and HL3 (HL1 = 2-[(2-amino-ethylimino)-methyl]-phenol, HL2 = 2-[(2-methylamino-ethylimino)-methyl]-phenol and HL3 = 2-[1-(2-dimethylamino-ethylimino)-ethyl]-phenol). The complexes are characterized by single-crystal X-ray diffraction analyses, IR, UV-vis and EPR spectroscopy, and variable-temperature magnetic measurements. All the compounds contain a partial cubane [Cu3O4] core consisting of the trinuclear unit [(CuL)(3)(mu(3)-OH)](2+) together with perchlorate or fluoroborate anions. In each of the complexes, the three copper atoms are five-coordinated with a distorted square-pyramidal geometry except in complex 1, in which one of the Cu-II ions of the trinuclear unit is six-coordinate being in addition weakly coordinated to one of the perchlorate anions. Variable-temperature magnetic measurements and EPR spectra indicate an antiferromagnetic exchange coupling between the CuII ions of complexes 1 and 2, while this turned out to be ferromagnetic for complex 3. Experimental values have been fitted according to an isotropic exchange Hamiltonian. Calculations based on Density Functional Theory have also been performed in order to estimate the exchange coupling constants in these three complexes. Both sets of values indicate similar trends and specially calculated J values establish a magneto-structural correlation between them and the Cu-O-Cu bond angle, in that the coupling is more ferromagnetic for smaller bond angle values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of light microscopy and DMACA staining strongly suggested that plant and animal cell nuclei act as sinks for flavanols [1, 2]. Detailed uv-vis spectroscopic titration experiments indicated that histone proteins are the likely binding sites in the nucleus [2]. Here we report the development of a multi-photon excitation microscopy technique combined with fluorescent lifetime measurements of flavanols. Using this technique, (+) catechin, (-) epicatechin and (-) epigallocatechin gallate (EGCG) showed strikingly different excited state lifetimes in solution. Interaction of histone proteins with flavanols was indicated by the appearance of a significant τ2-component of 1.7 to 4.0ns. Tryptophan interference could be circumvented in the in vivo fluorescence lifetime imaging microscopy (FLIM) experiments with 2-photon excitation at 630nm. This enabled visualisation and semi-quantitative measurements that demonstrated unequivocally the absorption of (+)catechin, (-)epicatechin and EGCG by nuclei of onion cells. 3D FLIM revealed for the first time that externally added EGCG penetrated the whole nucleus in onion cells. The relative proportions of EGCG in cytoplasm: nucleus: nucleoli were ca. 1:10:100. FLIM experiments may therefore facilitate probing the health effects of EGCG, which is the major constituent of green tea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dinuclear complex [{Ru(CN)4}2(μ-bppz)]4− shows a strongly solvent-dependent metal–metal electronic interaction which allows the mixed-valence state to be switched from class 2 to class 3 by changing solvent from water to CH2Cl2. In CH2Cl2 the separation between the successive Ru(II)/Ru(III) redox couples is 350 mVand the IVCT band (from the UV/Vis/NIR spectroelectrochemistry) is characteristic of a borderline class II/III or class III mixed valence state. In water, the redox separation is only 110 mVand the much broader IVCT transition is characteristic of a class II mixed-valence state. This is consistent with the observation that raising and lowering the energy of the d(π) orbitals in CH2Cl2 or water, respectively, will decrease or increase the energy gap to the LUMO of the bppz bridging ligand, which provides the delocalisation pathway via electron-transfer. IR spectroelectrochemistry could only be carried out successfully in CH2Cl2 and revealed class III mixed-valence behaviour on the fast IR timescale. In contrast to this, time-resolved IR spectroscopy showed that the MLCTexcited state, which is formulated as RuIII(bppz˙−)RuII and can therefore be considered as a mixed-valence Ru(II)/Ru(III) complex with an intermediate bridging radical anion ligand, is localised on the IR timescale with spectroscopically distinct Ru(II) and Ru(III) termini. This is because the necessary electron-transfer via the bppz ligand is more difficult because of the additional electron on bppz˙− which raises the orbital through which electron exchange occurs in energy. DFT calculations reproduce the electronic spectra of the complex in all three Ru(II)/Ru(II), Ru(II)/Ru(III) and Ru(III)/Ru(III) calculations in both water and CH2Cl2 well as long as an explicit allowance is made for the presence of water molecules hydrogen-bonded to the cyanides in the model used. They also reproduce the excited-state IR spectra of both [Ru(CN)4(μ-bppz)]2– and [{Ru(CN)4}2(μ-bppz)]4− very well in both solvents. The reorganization of the water solvent shell indicates a possible dynamical reason for the longer life time of the triplet state in water compared to CH2Cl2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Naphthalene and anthracene transition metalates are potent reagents, but their electronic structures have remained poorly explored. A study of four Cp*-substituted iron complexes (Cp* = pentamethylcyclopentadienyl) now gives rare insight into the bonding features of such species. The highly oxygen- and water-sensitive compounds [K(18-crown- 6){Cp*Fe(η4-C10H8)}] (K1), [K(18-crown-6){Cp*Fe(η4-C14H10)}] (K2), [Cp*Fe(η4-C10H8)] (1), and [Cp*Fe(η4-C14H10)] (2) were synthesized and characterized by NMR, UV−vis, and 57Fe Mössbauer spectroscopy. The paramagnetic complexes 1 and 2 were additionally characterized by electron paramagnetic resonance (EPR) spectroscopy and magnetic susceptibility measurements. The molecular structures of complexes K1, K2, and 2 were determined by single-crystal X-ray crystallography. Cyclic voltammetry of 1 and 2 and spectroelectrochemical experiments revealed the redox properties of these complexes, which are reversibly reduced to the monoanions [Cp*Fe(η4-C10H8)]− (1−) and [Cp*Fe(η4-C14H10)]− (2−) and reversibly oxidized to the cations [Cp*Fe(η6-C10H8)]+ (1+) and [Cp*Fe(η6-C14H10)]+ (2+). Reduced orbital charges and spin densities of the naphthalene complexes 1−/0/+ and the anthracene derivatives 2−/0/+ were obtained by density functional theory (DFT) methods. Analysis of these data suggests that the electronic structures of the anions 1− and 2− are best represented by low-spin FeII ions coordinated by anionic Cp* and dianionic naphthalene and anthracene ligands. The electronic structures of the neutral complexes 1 and 2 may be described by a superposition of two resonance configurations which, on the one hand, involve a low-spin FeI ion coordinated by the neutral naphthalene or anthracene ligand L, and, on the other hand, a low-spin FeII ion coordinated to a ligand radical L•−. Our study thus reveals the redox noninnocent character of the naphthalene and anthracene ligands, which effectively stabilize the iron atoms in a low formal, but significantly higher spectroscopic oxidation state.