46 resultados para Types of sea shores
Resumo:
Within generative L2 acquisition research there is a longstanding debate as to what underlies observable differences in L1/L2 knowledge/ performance. On the one hand, Full Accessibility approaches maintain that target L2 syntactic representations (new functional categories and features) are acquirable (e.g., Schwartz & Sprouse, 1996). Conversely, Partial Accessibility approaches claim that L2 variability and/or optionality, even at advanced levels, obtains as a result of inevitable deficits in L2 narrow syntax and is conditioned upon a maturational failure in adulthood to acquire (some) new functional features (e.g., Beck, 1998; Hawkins & Chan, 1997; Hawkins & Hattori, 2006; Tsimpli & Dimitrakopoulou, 2007). The present study tests the predictions of these two sets of approaches with advanced English learners of L2 Brazilian Portuguese (n = 21) in the domain of inflected infinitives. These advanced L2 learners reliably differentiate syntactically between finite verbs, uninflected and inflected infinitives, which, as argued, only supports Full Accessibility approaches. Moreover, we will discuss how testing the domain of inflected infinitives is especially interesting in light of recent proposals that Brazilian Portuguese colloquial dialects no longer actively instantiate them (Lightfoot, 1991; Pires, 2002, 2006; Pires & Rothman, 2009; Rothman, 2007).
Resumo:
A new record of sea surface temperature (SST) for climate applications is described. This record provides independent corroboration of global variations estimated from SST measurements made in situ. Infrared imagery from Along-Track Scanning Radiometers (ATSRs) is used to create a 20 year time series of SST at 0.1° latitude-longitude resolution, in the ATSR Reprocessing for Climate (ARC) project. A very high degree of independence of in situ measurements is achieved via physics-based techniques. Skin SST and SST estimated for 20 cm depth are provided, with grid cell uncertainty estimates. Comparison with in situ data sets establishes that ARC SSTs generally have bias of order 0.1 K or smaller. The precision of the ARC SSTs is 0.14 K during 2003 to 2009, from three-way error analysis. Over the period 1994 to 2010, ARC SSTs are stable, with better than 95% confidence, to within 0.005 K yr−1(demonstrated for tropical regions). The data set appears useful for cleanly quantifying interannual variability in SST and major SST anomalies. The ARC SST global anomaly time series is compared to the in situ-based Hadley Centre SST data set version 3 (HadSST3). Within known uncertainties in bias adjustments applied to in situ measurements, the independent ARC record and HadSST3 present the same variations in global marine temperature since 1996. Since the in situ observing system evolved significantly in its mix of measurement platforms and techniques over this period, ARC SSTs provide an important corroboration that HadSST3 accurately represents recent variability and change in this essential climate variable.
Resumo:
We present a new coefficient-based retrieval scheme for estimation of sea surface temperature (SST) from the Along Track Scanning Radiometer (ATSR) instruments. The new coefficients are banded by total column water vapour (TCWV), obtained from numerical weather prediction analyses. TCWV banding reduces simulated regional retrieval biases to < 0.1 K compared to biases ~ 0.2 K for global coefficients. Further, detailed treatment of the instrumental viewing geometry reduces simulated view-angle related biases from ~ 0.1 K down to < 0.005 K for dual-view retrievals using channels at 11 and 12 μm. A novel analysis of trade-offs related to the assumed noise level when defining coefficients is undertaken, and we conclude that adding a small nominal level of noise (0.01 K) is optimal for our purposes. When applied to ATSR observations, some inter-algorithm biases appear as TCWV-related differences in SSTs estimated from different channel combinations. The final step in coefficient determination is to adjust the offset coefficient in each TCWV band to match results from a reference algorithm. This reference uses the dual-view observations of 3.7 and 11 μm. The adjustment is independent of in situ measurements, preserving independence of the retrievals. The choice of reference is partly motivated by uncertainty in the calibration of the 12 μm of Advanced ATSR. Lastly, we model the sensitivities of the new retrievals to changes to TCWV and changes in true SST, confirming that dual-view SSTs are most appropriate for climatological applications
Resumo:
We present new radiative transfer simulations to support determination of sea surface temperature (SST) from Along Track Scanning Radiometer (ATSR) imagery. The simulations are to be used within the ATSR Reprocessing for Climate project. The simulations are based on the “Reference Forward Model” line-by-line model linked with a sea surface emissivity model that accounts for wind speed and temperature, and with a discrete ordinates scattering model (DISORT). Input to the forward model is a revised atmospheric profile dataset, based on full resolution ERA-40, with a wider range of high-latitude profiles to address known retrieval biases in those regions. Analysis of the radiative impacts of atmospheric trace gases shows that geographical and temporal variation of N2O, CH4, HNO3, and CFC-11 and CFC-12 have effects of order 0.05, 0.2, 0.1 K on the 3.7, 11, 12 μm channels respectively. In addition several trace gases, neglected in previous studies, are included using fixed profiles contributing ~ 0.04 K to top-of-atmosphere BTs. Comparison against observations for ATSR2 and AATSR indicates that forward model biases have been reduced from 0.2 to 0.5 K for previous simulations to ~ 0.1 K.
Resumo:
Most of the operational Sea Surface Temperature (SST) products derived from satellite infrared radiometry use multi-spectral algorithms. They show, in general, reasonable performances with root mean square (RMS) residuals around 0.5 K when validated against buoy measurements, but have limitations, particularly a component of the retrieval error that relates to such algorithms' limited ability to cope with the full variability of atmospheric absorption and emission. We propose to use forecast atmospheric profiles and a radiative transfer model to simulate the algorithmic errors of multi-spectral algorithms. In the practical case of SST derived from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG), we demonstrate that simulated algorithmic errors do explain a significant component of the actual errors observed for the non linear (NL) split window algorithm in operational use at the Centre de Météorologie Spatiale (CMS). The simulated errors, used as correction terms, reduce significantly the regional biases of the NL algorithm as well as the standard deviation of the differences with drifting buoy measurements. The availability of atmospheric profiles associated with observed satellite-buoy differences allows us to analyze the origins of the main algorithmic errors observed in the SEVIRI field of view: a negative bias in the inter-tropical zone, and a mid-latitude positive bias. We demonstrate how these errors are explained by the sensitivity of observed brightness temperatures to the vertical distribution of water vapour, propagated through the SST retrieval algorithm.
Resumo:
Optimal estimation (OE) improves sea surface temperature (SST) estimated from satellite infrared imagery in the “split-window”, in comparison to SST retrieved using the usual multi-channel (MCSST) or non-linear (NLSST) estimators. This is demonstrated using three months of observations of the Advanced Very High Resolution Radiometer (AVHRR) on the first Meteorological Operational satellite (Metop-A), matched in time and space to drifter SSTs collected on the global telecommunications system. There are 32,175 matches. The prior for the OE is forecast atmospheric fields from the Météo-France global numerical weather prediction system (ARPEGE), the forward model is RTTOV8.7, and a reduced state vector comprising SST and total column water vapour (TCWV) is used. Operational NLSST coefficients give mean and standard deviation (SD) of the difference between satellite and drifter SSTs of 0.00 and 0.72 K. The “best possible” NLSST and MCSST coefficients, empirically regressed on the data themselves, give zero mean difference and SDs of 0.66 K and 0.73 K respectively. Significant contributions to the global SD arise from regional systematic errors (biases) of several tenths of kelvin in the NLSST. With no bias corrections to either prior fields or forward model, the SSTs retrieved by OE minus drifter SSTs have mean and SD of − 0.16 and 0.49 K respectively. The reduction in SD below the “best possible” regression results shows that OE deals with structural limitations of the NLSST and MCSST algorithms. Using simple empirical bias corrections to improve the OE, retrieved minus drifter SSTs are obtained with mean and SD of − 0.06 and 0.44 K respectively. Regional biases are greatly reduced, such that the absolute bias is less than 0.1 K in 61% of 10°-latitude by 30°-longitude cells. OE also allows a statistic of the agreement between modelled and measured brightness temperatures to be calculated. We show that this measure is more efficient than the current system of confidence levels at identifying reliable retrievals, and that the best 75% of satellite SSTs by this measure have negligible bias and retrieval error of order 0.25 K.
Resumo:
We show that retrievals of sea surface temperature from satellite infrared imagery are prone to two forms of systematic error: prior error (familiar from the theory of atmospheric sounding) and error arising from nonlinearity. These errors have different complex geographical variations, related to the differing geographical distributions of the main geophysical variables that determine clear-sky brightness-temperatures over the oceans. We show that such errors arise as an intrinsic consequence of the form of the retrieval (rather than as a consequence of sub-optimally specified retrieval coefficients, as is often assumed) and that the pattern of observed errors can be simulated in detail using radiative-transfer modelling. The prior error has the linear form familiar from atmospheric sounding. A quadratic equation for nonlinearity error is derived, and it is verified that the nonlinearity error exhibits predominantly quadratic behaviour in this case.
Resumo:
The retrieval (estimation) of sea surface temperatures (SSTs) from space-based infrared observations is increasingly performed using retrieval coefficients derived from radiative transfer simulations of top-of-atmosphere brightness temperatures (BTs). Typically, an estimate of SST is formed from a weighted combination of BTs at a few wavelengths, plus an offset. This paper addresses two questions about the radiative transfer modeling approach to deriving these weighting and offset coefficients. How precisely specified do the coefficients need to be in order to obtain the required SST accuracy (e.g., scatter <0.3 K in week-average SST, bias <0.1 K)? And how precisely is it actually possible to specify them using current forward models? The conclusions are that weighting coefficients can be obtained with adequate precision, while the offset coefficient will often require an empirical adjustment of the order of a few tenths of a kelvin against validation data. Thus, a rational approach to defining retrieval coefficients is one of radiative transfer modeling followed by offset adjustment. The need for this approach is illustrated from experience in defining SST retrieval schemes for operational meteorological satellites. A strategy is described for obtaining the required offset adjustment, and the paper highlights some of the subtler aspects involved with reference to the example of SST retrievals from the imager on the geostationary satellite GOES-8.
Resumo:
During the last century, global climate has been warming, and projections indicate that such a warming is likely to continue over coming decades. Most of the extra heat is stored in the ocean, resulting in thermal expansion of seawater and global mean sea level rise. Previous studies have shown that after CO2 emissions cease or CO2 concentration is stabilized, global mean surface air temperature stabilizes or decreases slowly, but sea level continues to rise. Using idealized CO2 scenario simulations with a hierarchy of models including an AOGCM and a step-response model, the authors show how the evolution of thermal expansion can be interpreted in terms of the climate energy balance and the vertical profile of ocean warming. Whereas surface temperature depends on cumulative CO2 emissions, sea level rise due to thermal expansion depends on the time profile of emissions. Sea level rise is smaller for later emissions, implying that targets to limit sea level rise would need to refer to the rate of emissions, not only to the time integral. Thermal expansion is in principle reversible, but to halt or reverse it quickly requires the radiative forcing to be reduced substantially, which is possible on centennial time scales only by geoengineering. If it could be done, the results indicate that heat would leave the ocean more readily than it entered, but even if thermal expansion were returned to zero, the geographical pattern of sea level would be altered. Therefore, despite any aggressive CO2 mitigation, regional sea level change is inevitable.
Resumo:
Several continuous observational datasets of Artic sea-ice concentration are currently available that cover the period since the advent of routine satellite observations. We report on a comparison of three sea-ice concentration datasets. These are the National Ice Center charts, and two passive microwave radiometer datasets derived using different approaches: the NASA team and Bootstrap algorithms. Empirical orthogonal function (EOF) analyses were employed to compare modes of variability and their consistency between the datasets. The analysis was motivated by the need for a reliable, realistic sea ice climatology for use in climate model simulations, for which both the variability and absolute values of extent and concentration are important. We found that, while there are significant discrepancies in absolute concentrations, the major modes of variability derived from all records were essentially the same.
Resumo:
[1] Sea ice failure under low-confinement compression is modeled with a linear Coulombic criterion that can describe either fractural failure or frictional granular yield along slip lines. To study the effect of anisotropy we consider a simplified anisotropic sea ice model where the sea ice thickness depends on orientation. Accommodation of arbitrary deformation requires failure along at least two intersecting slip lines, which are determined by finding two maxima of the yield criterion. Due to the anisotropy these slip lines generally differ from the standard, Coulombic slip lines that are symmetrically positioned around the compression direction, and therefore different tractions along these slip lines give rise to a nonsymmetric stress tensor. We assume that the skewsymmetric part of this tensor is counterbalanced by an additional elastic stress in the sea ice field that suppresses floe spin. We consider the case of two leads initially formed in an isotropic ice cover under compression, and address the question of whether these leads will remain active or new slip lines will form under a rotation of the principal compression direction. Decoupled and coupled models of leads are considered and it is shown that for this particular case they both predict lead reactivation in almost the same way. The coupled model must, however, be used in determining the stress as the decoupled model does not resolve the stress asymmetry properly when failure occurs in one lead and at a new slip line.
Resumo:
A discrete-element model of sea ice is used to study how a 90° change in wind direction alters the pattern of faults generated through mechanical failure of the ice. The sea-ice domain is 400km in size and consists of polygonal floes obtained through a Voronoi tessellation. Initially the floes are frozen together through viscous–elastic joints that can break under sufficient compressive, tensile and shear deformation. A constant wind-stress gradient is applied until the initially frozen ice pack is broken into roughly diamond-shaped aggregates, with crack angles determined by wing-crack formation. Then partial refreezing of the cracks delineating the aggregates is modelled through reduction of their length by a particular fraction, the ice pack deformation is neglected and the wind stress is rotated by 90°. New cracks form, delineating aggregates with a different orientation. Our results show the new crack orientation depends on the refrozen fraction of the initial faults: as this fraction increases, the new cracks gradually rotate to the new wind direction, reaching 90° for fully refrozen faults. Such reorientation is determined by a competition between new cracks forming at a preferential angle determined by the wing-crack theory and at old cracks oriented at a less favourable angle but having higher stresses due to shorter contacts across the joints
Resumo:
In this note, the authors discuss the contribution that frictional sliding of ice floes (or floe aggregates) past each other and pressure ridging make to the plastic yield curve of sea ice. Using results from a previous study that explicitly modeled the amount of sliding and ridging that occurs for a given global strain rate, it is noted that the relative contribution of sliding and ridging to ice stress depends upon ice thickness. The implication is that the shape and size of the plastic yield curve is dependent upon ice thickness. The yield-curve shape dependence is in addition to plastic hardening/weakening that relates the size of the yield curve to ice thickness. In most sea ice dynamics models the yield-curve shape is taken to be independent of ice thickness. The authors show that the change of the yield curve due to a change in the ice thickness can be taken into account by a weighted sum of two thickness-independent rheologies describing ridging and sliding effects separately. It would be straightforward to implement the thickness-dependent yield-curve shape described here into sea ice models used for global or regional ice prediction.
Resumo:
We develop the essential ingredients of a new, continuum and anisotropic model of sea-ice dynamics designed for eventual use in climate simulation. These ingredients are a constitutive law for sea-ice stress, relating stress to the material properties of sea ice and to internal variables describing the sea-ice state, and equations describing the evolution of these variables. The sea-ice cover is treated as a densely flawed two-dimensional continuum consisting of a uniform field of thick ice that is uniformly permeated with narrow linear regions of thinner ice called leads. Lead orientation, thickness and width distributions are described by second-rank tensor internal variables: the structure, thickness and width tensors, whose dynamics are governed by corresponding evolution equations accounting for processes such as new lead generation and rotation as the ice cover deforms. These evolution equations contain contractions of higher-order tensor expressions that require closures. We develop a sea-ice stress constitutive law that relates sea-ice stress to the structure tensor, thickness tensor and strain rate. For the special case of empty leads (containing no ice), linear closures are adopted and we present calculations for simple shear, convergence and divergence.