20 resultados para Typ 2-diabetes


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The health effects of milk and dairy food consumption would best be determined in randomised controlled trials. No adequately powered trial has been reported and none is likely because of the numbers required. The best evidence comes, therefore, from prospective cohort studies with disease events and death as outcomes. Medline was searched for prospective studies of dairy food consumption and incident vascular disease and Type 2 diabetes, based on representative population samples. Reports in which evaluation was in incident disease or death were selected. Meta-analyses of the adjusted estimates of relative risk for disease outcomes in these reports were conducted. Relevant case–control retrospective studies were also identified and the results are summarised in this article. Meta-analyses suggest a reduction in risk in the subjects with the highest dairy consumption relative to those with the lowest intake: 0.87 (0.77, 0.98) for all-cause deaths, 0.92 (0.80, 0.99) for ischaemic heart disease, 0.79 (0.68, 0.91) for stroke and 0.85 (0.75, 0.96) for incident diabetes. The number of cohort studies which give evidence on individual dairy food items is very small, but, again, there is no convincing evidence of harm from consumption of the separate food items. In conclusion, there appears to be an enormous mis-match between the evidence from long-term prospective studies and perceptions of harm from the consumption of dairy food items.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Several insulin receptor substrate-2 (IRS-2) polymorphisms have been studied in relation to insulin resistance and type 2 diabetes. To examine whether the genetic variability at the IRS-2 gene locus was associated with the degree of insulin resistance and plasma fatty acid levels in metabolic syndrome (MetS) subjects. Methods and results: Insulin sensitivity, insulin secretion, glucose effectiveness, plasma fatty acid composition and three IRS-2 tag-single nucleotide polymorphisms (SNPs) were determined in 452 MetS subjects. Among subjects with the lowest level of monounsaturated (MUFA) (below the median), the rs2289046 A/A genotype was associated with lower glucose effectiveness (p<0.038), higher fasting insulin concentrations (p<0.028) and higher HOMA IR (p<0.038) as compared to subjects carrying the minor G-allele (A/G and G/G). In contrast, among subjects with the highest level of MUFA (above the median), the A/A genotype was associated with lower fasting insulin concentrations and HOMA-IR, whereas individuals carrying the G allele and with the highest level of ω-3 polyunsaturated fatty acids (above the median) showed lower fasting insulin (p<0.01) and HOMA-IR (p<0.02) as compared with A/A subjects. Conclusion: The rs2289046 polymorphism at the IRS2 gene locus may influence insulin sensitivity by interacting with certain plasma fatty acids in MetS subjects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVE: The objective of the study was to examine body fat distribution using computed tomography (CT), dual-energy X-ray absorptiometry (DEXA), and anthropometry in relation to type 2 diabetes in urban Asian Indians. RESEARCH DESIGN AND METHODS: This is a case-control study of 82 type 2 diabetic and 82 age- and sex-matched nondiabetic subjects from the Chennai Urban Rural Epidemiology Study, an ongoing epidemiological study in southern India. Visceral, subcutaneous, and total abdominal fat were measured using CT, while DEXA was used to measure central abdominal and total body fat. Anthropometric measures included BMI, waist circumference, sagittal abdominal diameter (SAD), and waist-to-hip ratio. RESULTS: Visceral and central abdominal fat showed a strong correlation with each other (P <0.0001), and kappa analysis revealed a fairly good agreement between tertiles of visceral and central abdominal fat (kappa=0.44, P <0.0001). Diabetic subjects had significantly higher visceral (P=0.005) and central abdominal (P=0.011) fat compared with nondiabetic subjects. Waist circumference and SAD showed a strong correlation with visceral (P <0.01) and central abdominal (P <0.0001) fat in both diabetic and nondiabetic subjects. Logistic regression analysis revealed visceral (odds ratio [OR] 1.011, P=0.004) and central abdominal (OR 1.001, P=0.013) fat to be associated with diabetes, even after adjusting for age and sex. CONCLUSIONS: Visceral and central abdominal fat showed a strong association with type 2 diabetes. Both measures correlated well with each other and with waist circumference and SAD in diabetic and nondiabetic urban Asian Indians.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Genes play an important role in the development of diabetes mellitus. Putative susceptibility genes could be the key to the development of diabetes. Type 1 diabetes mellitus is one of the most common chronic diseases of childhood. A combination of genetic and environmental factors is most likely the cause of Type 1 diabetes. The pathogenetic sequence leading to the selective autoimmune destruction of islet beta-cells and development of Type 1 diabetes involves genetic factors, environmental factors, immune regulation and chemical mediators. Unlike Type 1 diabetes mellitus, Type 2 diabetes is often considered a polygenic disorder with multiple genes located on different chromosomes being associated with this condition. This is further complicated by numerous environmental factors which also contribute to the clinical manifestation of the disorder in genetically predisposed persons. Only a minority of cases of type 2 diabetes are caused by single gene defects such as maturity onset diabetes of the young (MODY), syndrome of insulin resistance (insulin receptor defect) and maternally inherited diabetes and deafness (mitochondrial gene defect). Although Type 2 diabetes mellitus appears in almost epidemic proportions our knowledge of the mechanism of this disease is limited. More information about insulin secretion and action and the genetic variability of the various factors involved will contribute to better understanding and classification of this group of diseases. This article discusses the results of various genetic studies on diabetes with special reference to Indian population.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Gulf is experiencing a pandemic of lifestyle-induced obesity and type 2 diabetes mellitus (T2DM), with rates exceeding 50 and 30%, respectively. It is likely that T2DM represents the tip of a very large metabolic syndrome iceberg, which precedes T2DM by many years and is associated with abnormal/ectopic fat distribution, pathological systemic oxidative stress and inflammation. However, the definitions are still evolving with the role of different fat depots being critical. Hormetic stimuli, which include exercise, calorie restriction, temperature extremes, dehydration and even some dietary components (such as plant polyphenols), may well modulate fat deposition. All induce physiological levels of oxidative stress, which results in mitochondrial biogenesis and increased anti-oxidant capacity, improving metabolic flexibility and the ability to deal with lipids. We propose that the Gulf Metabolic Syndrome results from an unusually rapid loss of hormetic stimuli within an epigenetically important time frame of 2-3 generations. Epigenetics indicates that thriftiness can be programmed by the environment and passed down through several generations. Thus this loss of hormesis can result in continuation of metabolic inflexibility, with mothers exposing the foetus to a milieu that perpetuates a stressed epigenotype. As the metabolic syndrome increases oxidative stress and reduces life expectancy, a better descriptor may therefore be the Lifestyle-Induced Metabolic Inflexibility and accelerated AGEing syndrome – LIMIT-AGE. As life expectancy in the Gulf begins to fall, with perhaps a third of this life being unhealthy – including premature loss of sexual function, it is vital to detect evidence of this condition as early in life as possible. One effective way to do this is by detecting evidence of metabolic inflexibility by studying body fat content and distribution by magnetic resonance (MR). The Gulf Metabolic Syndrome thus represents an accelerated form of the metabolic syndrome induced by the unprecedented rapidity of lifestyle change in the region, the stress of which is being passed from generation to generation and may be accumulative. The fundamental cause is probably due to a rapid increase in countrywide wealth. This has benefited most socioeconomic groups, resulting in the development of an obesogenic environment as the result of the rapid adoption of Western labour saving and stress relieving devices (e.g. cars and air conditioning), as well as the associated high calorie diet.