27 resultados para Two-loop-calculations, LEP, ILC
Resumo:
The vinylogous aldol reaction between appropriate aldehydes and furan-based silyloxy diene synthon generated from 3-benzyl-5H-furan-2-one (3) afforded two truncated lactone analogues [compounds (4) and (5)] of nostoclides (2). The compounds were fully characterized by IR, NMR (H-1 and C-13), 2D NMR spectroscopy experiments (HMBC, HSQC and NOESY), MS spectrometry and X-ray crystallography. Compounds (4) and (5) crystallized in the space group P2(1)2(1)2(1) and P2(1)/c, respectively. Although expected correlations between hydrogen atoms in spatial close proximity were not observed for compound (5) using NMR, the stereochemistry of the exocyclic double bond of both (4) and (5) was unambiguously determined to be Z and E, respectively, using X-ray crystallography. The packing of both compounds within the crystal are stabilized by non-classical inter-molecular hydrogen bonds. DFT calculations (B3LYP/6-31+G* level) confirmed that the crystal structures possessed the lowest energies in the gas phase when compared to their geometric isomers. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Using the 1:2 condensate (L) of diethylenetriamine and benzaldehyde as the main ligand, binuclear copper(l) complexes [Cu2L2(4,4'-bipyridine)](CIO4)(2).0.5H(2)O (1a) and [Cu2L2(1,2-bis(4-pyridyl)ethane)](CIO4)(2) (1b) are synthesised. The two metal ions in la are bridged by 4,4'-bipyridine and those in 1b by 1,2-bis(4-pyridyl)ethane, From the X-ray crystal structure of la, each metal ion is found to be bound to three N atoms of L and one of the two N atoms of the bridging ligand in a distorted tetrahedral fashion. The Cu(I)-N bond lengths in la lie in the range of 1.998(5)-2.229(6) Angstrom. Electrochemical studies in dichloromethane (DCM) show that the (Cu2N8)-N-I moieties in la and 1b are composed of two essentially non-interacting (CuN4)-N-I cores with Cu-II/I potential of 0.44 V vs. SCE. While la displays metal induced quenching of the inherent emission of 4,4'-bipyridine in DCM solution, 1b exhibits two weak emission bands in DCM solution at 425 and 477 nm (total quantum yield = 3.59 x 10(-5)) originating from MLCT excited states. With the help of Extended Huckel calculations it is established that the higher energy emission in 1b is from Cu(I) --> bridging-ligand charge transfer excited state and the lower energy one in 1b from Cu(I) --> L charge transfer excited state.
Resumo:
Experimental data for the title reaction were modeled using master equation (ME)/RRKM methods based on the Multiwell suite of programs. The starting point for the exercise was the empirical fitting provided by the NASA (Sander, S. P.; Finlayson-Pitts, B. J.; Friedl, R. R.; Golden, D. M.; Huie, R. E.; Kolb, C. E.; Kurylo, M. J.; Molina, M. J.; Moortgat, G. K.; Orkin, V. L.; Ravishankara, A. R. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15; Jet Propulsion Laboratory: Pasadena, California, 2006)(1) and IUPAC (Atkinson, R.; Baulch, D. L.; Cox, R. A.: R. F. Hampson, J.; Kerr, J. A.; Rossi, M. J.; Troe, J. J. Phys. Chem. Ref. Data. 2000, 29, 167) 2 data evaluation panels, which represents the data in the experimental pressure ranges rather well. Despite the availability of quite reliable parameters for these calculations (molecular vibrational frequencies (Parthiban, S.; Lee, T. J. J. Chem. Phys. 2000, 113, 145)3 and a. value (Orlando, J. J.; Tyndall, G. S. J. Phys. Chem. 1996, 100,. 19398)4 of the bond dissociation energy, D-298(BrO-NO2) = 118 kJ mol(-1), corresponding to Delta H-0(circle) = 114.3 kJ mol(-1) at 0 K) and the use of RRKM/ME methods, fitting calculations to the reported data or the empirical equations was anything but straightforward. Using these molecular parameters resulted in a discrepancy between the calculations and the database of rate constants of a factor of ca. 4 at, or close to, the low-pressure limit. Agreement between calculation and experiment could be achieved in two ways, either by increasing Delta H-0(circle) to an unrealistically high value (149.3 kJ mol(-1)) or by increasing
Resumo:
The lithium salt of the anionic SPS pincer ligand composed of a central hypervalent lambda(4)-phosphinine ring bearing two ortho-positioned diphenylphosphine sulfide side arms reacts with [Mn(CO)(5)Br] to give fac-[Mn(SPS)(CO)(3)], This isomer can be converted photochemicaily to mer-[Mn(SPS)(CO)(3)], with a very high quantum yield (0.80 +/- 0.05). The thermal backreaction is slow (taking ca. 8 h at room temperature), in contrast to rapid electrodecatalyzed mer-to-fac isomerization triggered by electrochemical reduction of mer-[Mn(SPS)(CO)(3)]. Both geometric isomers of [Mn(SPS)(CO)(3)] have been characterized by X-ray crystallography. Both isomers show luminescence from a low-lying (IL)-I-3 (SPS-based) excited state. The light emission of fac-[Mn(SPS)(CO)(3)] is largely quenched by the efficient photoisomerization occurring probably from a low-lying Mn-CO dissociative excited state. Density functional theory (DFT) and time-dependent DFT calculations describe the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of fac- and mer-[Mn(CO)(3)(SPS)] as ligand-centered orbitals, largely localized on the phosphinine ring of the SPS pincer ligand. In line with the ligand nature of its frontier orbitals, fac-[Mn(SPS)(CO)(3)] is electrochemically reversibly oxidized and reduced to the corresponding radical cation and anion, respectively. The spectroscopic (electron paramagnetic resonance, IR, and UV-vis) characterization of the radical species provides other evidence for the localization of the redox steps on the SIPS ligand. The smaller HOMO-LUMO energy difference in the case of mer-[Mn(CO)(3)(SPS)], reflected in the electronic absorption and emission spectra, corresponds with its lower oxidation potential compared to that of the fac isomer. The thermodynamic instability of mer-[Mn(CO)(3)(SPS)], confirmed by the DFT calculations, increases upon one-electron reduction and oxidation of the complex.
Resumo:
The lowest absorption band of fac-[Re(Cl)(CO)(3)(5-NO2-phen)] encompasses two close-lying MLCT transitions. The lower one is directed to LUMO, which is heavily localized on the NO2 group. The UV-vis absorption spectrum is well accounted for by TD-DFT (G03/PBEPBE1/CPCM), provided that the solvent, MeCN, is included in the calculations. Near-UV excitation of fac-[Re(Cl)(CO)(3)(5-NO2-phen)] populates a triplet metal to ligand charge-transfer excited state, (MLCT)-M-3, that was characterized by picosecond time-resolved IR spectroscopy. Large positive shifts of the v(CO) bands upon excitation (+70 cm(-1) for the A'(1) band) signify a very large charge separation between the Re(Cl)(CO)3 unit and the 5-NO2-phen ligand. Details of the excited-state character are revealed by TD-DFT calculated changes of electron density distribution. Experimental excited-state v(CO) wavenumbers agree well with those calculated by DFT. The (MLCT)-M-3 state decays with a ca. 10 ps lifetime (in MeCN) into another transient species, that was identified by TRIR and TD-DFT calculations as an intraligand (3)n pi* excited state, whereby the electron density is excited from the NO2 oxygen lone pairs to the pi* system of 5-NO2-phen. This state is short-lived, decaying to the ground state with a similar to 30 ps lifetime. The presence of an n pi* state seems to be the main factor responsible for the lack of emission and the very short lifetimes of 3 MLCT states seen in all d(6)-metal complexes of nitro-polypyridyl ligands. Localization of the excited electron density in the lowest (MLCT)-M-3 states parallels localization of the extra electron in the reduced state that is characterized by a very small negative shift of the v(CO) IR bands (-6 cm(-1) for A'(1)) but a large downward shift of the v(s)(NO2) IR band. The Re-Cl bond is unusually stable toward reduction, whereas the Cl ligand is readily substituted upon oxidation.
Resumo:
Zn(CN)2 and Ni(CN)2 are known for exhibiting anomalous thermal expansion over a wide temperature range. The volume thermal expansion coefficient for the cubic, three dimensionally connected material, Zn(CN)2, is negative (alpha(V) = −51 10(-6) K-1) while for Ni(CN)2, a tetragonal material, the thermal expansion coefficient is negative in the two dimensionally connected sheets (alpha(a) = −7 10(-6) K-1), but the overall thermal expansion coefficient is positive (alpha(V) = 48 10(-6) K-1). We have measured the temperature dependence of phonon spectra in these compounds and analyzed them using ab initio calculations. The spectra of the two compounds show large differences that cannot be explained by simple mass renormalization of the modes involving Zn (65.38 amu) and Ni (58.69 amu) atoms. This reflects the fact that the structure and bonding are quite different in the two compounds. The calculated pressure dependence of the phonon modes and of the thermal expansion coefficient, alpha(V), are used to understand the anomalous behavior in these compounds. Our ab initio calculations indicate that phonon modes of energy approx. 2 meV are major contributors to negative thermal expansion (NTE) in both the compounds. The low-energy modes of approx.8 and 13 meV in Zn(CN)2 also contribute significantly to the NTE in Zn(CN)2 and Ni(CN)2, respectively. The measured temperature dependence of the phonon spectra has been used to estimate the total anharmonicity of both compounds. For Zn(CN)2, the temperature-dependent measurements (total anharmonicity), along with our previously reported pressure dependence of the phonon spectra (quasiharmonic), is used to separate the explicit temperature effect at constant volume (intrinsic anharmonicity).
Resumo:
The conformational properties of the hybrid amphiphile formed by the conjugation of a hydrophobic peptide with four phenylalanine (Phe) residues and hydrophilic poly(ethylene glycol), have been investigated using quantum mechanical calculations and atomistic molecular dynamics simulations. The intrinsic conformational preferences of the peptide were examined using the building-up search procedure combined with B3LYP/ 6-31G(d) geometry optimizations, which led to the identification of 78, 78, and 92 minimum energy structures for the peptides containing one, two, and four Phe residues. These peptides tend to adopt regular organizations involving turn-like motifs that define ribbon or helicallike arrangements. Furthermore, calculations indicate that backbone ... side chain interactions involving the N-H of the amide groups and the pi clouds of the aromatic rings play a crucial role in Phe-containing peptides. On the other hand,MD simulations on the complete amphiphile in aqueous solution showed that the polymer fragment rapidly unfolds maximizing the contacts with the polar solvent, even though the hydrophobic peptide reduce the number of waters of hydration with respect to an individual polymer chain of equivalent molecular weight. In spite of the small effect of the peptide in the hydrodynamic properties of the polymer, we conclude that the two counterparts of the amphiphile tend to organize as independent modules.
Resumo:
This study examines criteria for the existence of two stable states of the Atlantic Meridional Overturning Circulation (AMOC) using a combination of theory and simulations from a numerical coupled atmosphere–ocean climate model. By formulating a simple collection of state parameters and their relationships, the authors reconstruct the North Atlantic Deep Water (NADW) OFF state behavior under a varying external salt-flux forcing. This part (Part I) of the paper examines the steady-state solution, which gives insight into the mechanisms that sustain the NADW OFF state in this coupled model; Part II deals with the transient behavior predicted by the evolution equation. The nonlinear behavior of the Antarctic Intermediate Water (AAIW) reverse cell is critical to the OFF state. Higher Atlantic salinity leads both to a reduced AAIW reverse cell and to a greater vertical salinity gradient in the South Atlantic. The former tends to reduce Atlantic salt export to the Southern Ocean, while the latter tends to increases it. These competing effects produce a nonlinear response of Atlantic salinity and salt export to salt forcing, and the existence of maxima in these quantities. Thus the authors obtain a natural and accurate analytical saddle-node condition for the maximal surface salt flux for which a NADW OFF state exists. By contrast, the bistability indicator proposed by De Vries and Weber does not generally work in this model. It is applicable only when the effect of the AAIW reverse cell on the Atlantic salt budget is weak.
Resumo:
Reaction of [Co(eta(5)-C5H5)(CO)(2)], 1, with 1,1'-bis(diphenylphosphino)ferrocene (dppf) yields the new trinuclear complex [Co(eta(5)-C5H5)(CO)](2)(mu-dppf), 2, which was structurally characterised by single crystal X-ray diffraction and showed two Co(eta(5)-C5H5)(CO) moieties covalently linked by a dppf bridge. Electrochemical studies in dichloromethane revealed that both Co(I) and Fe(II) in the precursors were oxidized to Co(II)/Co(III) and Fe(III), respectively. On the other hand, in 2 the two first oxidation waves were assigned to Co, the Fe(II) centre requiring a higher potential than in free dppf. DFT calculations showed that the HOMOs of 2 were localised in the Co fragments, owing to the destabilisation of the Co(eta(5)-C5H5)(CO) orbitals after binding dppf.
Resumo:
For the first time, vertical column measurements of (HNO3) above the Arctic Stratospheric Ozone Observatory (AStrO) at Eureka (80N, 86W), Canada, have been made during polar night using lunar spectra recorded with a Fourier Transform Infrared (FTIR) spectrometer, from October 2001 to March 2002. AStrO is part of the primary Arctic station of the Network for the Detection of Stratospheric Change (NDSC). These measurements were compared with FTIR measurements at two other NDSC Arctic sites: Thule, Greenland (76.5N, 68.8W) and Kiruna, Sweden (67.8N, 20.4E). The measurements were also compared with two atmospheric models: the Canadian Middle Atmosphere Model (CMAM) and SLIMCAT. This is the first time that CMAM HNO3 columns have been compared with observations in the Arctic. Eureka lunar measurements are in good agreement with solar ones made with the same instrument. Eureka and Thule HNO3 columns are consistent within measurement error. Differences among HNO3 columns measured at Kiruna and those measured at Eureka and Thule can be explained on the basis of the available sunlight hours and the polar vortex location. The comparison of CMAM HNO3 columns with Eureka and Kiruna data shows good agreement, considering CMAM small inter-annual variability. The warm 2001/02 winter with almost no Polar Stratospheric Clouds (PSCs) makes the comparison of the warm climate version of CMAM with these observations a good test for CMAM under no PSC conditions. SLIMCAT captures the magnitude of HNO3 columns at Eureka, and the day-to-day variability, but generally reports higher HNO3 columns than the CMAM climatological mean columns.
Resumo:
We performed mutual tapping experiments between two humans to investigate the conditions required for synchronized motion. A transition from an alternative mode to a synchronization mode was discovered under the same conditions when a subject changed from a reactive mode to an anticipation mode in single tapping experiments. Experimental results suggest that the cycle time for each tapping motion is tuned by a proportional control that is based on synchronization errors and cycle time errors. As the tapping frequency increases, the mathematical model based on the feedback control in the sensory-motor closed loop predicts a discrete mode transition as the gain factors of the proportional control decease. The conditions of the synchronization were shown as a consequence of the coupled dynamics based on the subsequent feedback loop in the sensory-motor system.
Resumo:
Calculations using a numerical model of the convection dominated high latitude ionosphere are compared with observations made by EISCAT as part of the UK-POLAR Special Programme. The data used were for 24–25 October 1984, which was characterized by an unusually steady IMF, with Bz < 0 and By > 0; in the calculations it was assumed that a steady IMF implies steady convection conditions. Using the electric field models of Heppner and Maynard (1983) appropriate to By > 0 and precipitation data taken from Spiroet al. (1982), we calculated the velocities and electron densities appropriate to the EISCAT observations. Many of the general features of the velocity data were reproduced by the model. In particular, the phasing of the change from eastward to westward flow in the vicinity of the Harang discontinuity, flows near the dayside throat and a region of slow flow at higher latitudes near dusk were well reproduced. In the afternoon sector modelled velocity values were significantly less than those observed. Electron density calculations showed good agreement with EISCAT observations near the F-peak, but compared poorly with observations near 211 km. In both cases, the greatest disagreement occurred in the early part of the observations, where the convection pattern was poorly known and showed some evidence of long term temporal change. Possible causes for the disagreement between observations and calculations are discussed and shown to raise interesting and, as yet, unresolved questions concerning the interpretation of the data. For the data set used, the late afternoon dip in electron density observed near the F-peak and interpreted as the signature of the mid-latitude trough is well reproduced by the calculations. Calculations indicate that it does not arise from long residence times of plasma on the nightside, but is the signature of a gap between two major ionization sources, viz. photoionization and particle precipitation.