20 resultados para Tunable
Resumo:
We develop a particle swarm optimisation (PSO) aided orthogonal forward regression (OFR) approach for constructing radial basis function (RBF) classifiers with tunable nodes. At each stage of the OFR construction process, the centre vector and diagonal covariance matrix of one RBF node is determined efficiently by minimising the leave-one-out (LOO) misclassification rate (MR) using a PSO algorithm. Compared with the state-of-the-art regularisation assisted orthogonal least square algorithm based on the LOO MR for selecting fixednode RBF classifiers, the proposed PSO aided OFR algorithm for constructing tunable-node RBF classifiers offers significant advantages in terms of better generalisation performance and smaller model size as well as imposes lower computational complexity in classifier construction process. Moreover, the proposed algorithm does not have any hyperparameter that requires costly tuning based on cross validation.
Resumo:
The LiHoxY1-xF4 magnetic material in a transverse magnetic field Bxx̂ perpendicular to the Ising spin direction has long been used to study tunable quantum phase transitions in a random disordered system. We show that the Bx-induced magnetization along the x̂ direction, combined with the local random dilution-induced destruction of crystalline symmetries, generates, via the predominant dipolar interactions between Ho3+ ions, random fields along the Ising ẑ direction. This identifies LiHoxY1-xF4 in Bx as a new random field Ising system. The random fields explain the rapid decrease of the critical temperature in the diluted ferromagnetic regime and the smearing of the nonlinear susceptibility at the spin-glass transition with increasing Bx and render the Bx-induced quantum criticality in LiHoxY1-xF4 likely inaccessible.
Resumo:
The structural characterization of subtilisin mesoscale clusters, which were previously shown to induce supramolecular order in biocatalytic self-assembly of Fmocdipeptides, was carried out by synchrotron small-angle X-ray, dynamic, and static light scattering measurements. Subtilisin molecules self-assemble to form supramolecular structures in phosphate buffer solutions. Structural arrangement of subtilisin clusters at 55 degrees Centigrade was found to vary systematically with increasing enzyme concentration. Static light scattering measurements showed the cluster structure to be consistent with a fractal-like arrangement, with fractal dimension varying from 1.8 to 2.6 with increasing concentration for low to moderate enzyme concentrations. This was followed by a structural transition around the enzyme concentration of 0.5 mg mL-1 to more compact structures with significantly slower relaxation dynamics, as evidenced by dynamic light scattering measurements. These concentration-dependent supramolecular enzyme clusters provide tunable templates for biocatalytic self-assembly.
Resumo:
Four alkyl substituted β-lactones were investigated as monomers in ring opening polymerisation to produce a family of poly(3-hydroxyalkanoate)s. Homopolymers were synthesised using a robust aluminium salen catalyst, resulting in polymers with low dispersity (Đ < 1.1) and predictable molecular weights. ABA triblock copolymers were prepared using poly(L-lactic acid) as the A block and the aforementioned poly(3-hydroxyalkanoate) as the B block via a sequential addition method. Characterisation of these copolymers determined they were well controlled with low dispersities and predictable molecular weight. DSC analysis determined copolymers prepared from β-butyrolactone or β-valerolactone yielded polymers with tunable and predictable thermal properties. Copolymers prepared from β-heptanolactone yielded a microphase separated material as indicated by SAXS, with two distinct Tgs. The polymers could be readily cast into flexible films and their improved tensile properties were explored.
Resumo:
Photosensitized oxidation of guanine is an important route to DNA damage. Ruthenium polypyridyls are very useful photosensitizers as their reactivity and DNA-binding properties are readily tunable. Here we show a strong difference in the reactivity of the two enantiomers of [Ru(TAP)2(dppz)]2+, by using time-resolved visible and IR spectroscopy. This reveals that the photosensitized one-electron oxidation of guanine in three oligonucleotide sequences proceeds with similar rates and yields for bound delta-[Ru(TAP)2(dppz)]2+, whereas those for the lambda enantiomer are very sensitive to base sequence. It is proposed that these differences are due to preferences of each enantiomer for different binding sites in the duplex.