44 resultados para Trees and shrubs.
Resumo:
We report evidence that helps resolve two competing explanations for stability in the mutualism between Ficus racemosa fig trees and the Ceratosolen fusciceps wasps that pollinate them. The wasps lay eggs in the tree's ovules, with each wasp larva developing at the expense of a fig seed. Upon maturity, the female wasps collect pollen and disperse to a new tree, continuing the cycle. Fig fitness is increased by producing both seeds and female wasps, whereas short-term wasp fitness increases only with more wasps, thereby resulting in a conflict of interests. We show experimentally that wasps exploit the inner layers of ovules first (the biased oviposition explanation), which is consistent with optimal-foraging theory. As oviposition increases, seeds in the middle layer are replaced on a one-to-one basis by pollinator offspring, which is also consistent with biased oviposition. Finally, in the outer layer of ovules, seeds disappear but are only partially replaced by pollinator offspring, which suggests high wasp mortality (the biased survival or ‘unbeatable seeds’ explanation). Our results therefore suggest that both biased oviposition and biased survival ensure seed production, thereby stabilizing the mutualism. We further argue that biased oviposition can maintain biased survival by selecting against wasp traits to overcome fig defenses. Finally, we report evidence suggesting that F. racemosa balances seed and wasp production at the level of the tree. Because figs are probably selected to allocate equally to male and female function, a 1:1 seed:wasp ratio suggests that fig trees are in control of the mutualism.
Resumo:
We present an integrated palaeoecological and archaeobotanical study of pre-Columbian raised-field agriculture in the Llanos de Moxos, a vast seasonally inundated forest–savanna mosaic in the Bolivian Amazon. Phytoliths from excavated raised-field soil units, together with pollen and charcoal in sediment cores from two oxbow lakes, were analysed to provide a history of land use and agriculture at the El Cerro raised-field site. The construction of raised fields involved the removal of savanna trees, and gallery forest was cleared from the area by AD 310. Despite the low fertility of Llanos de Moxos soils, we determined that pre-Columbian raised-field agriculture sufficiently improved soil conditions for maize cultivation. Fire was used as a common management practice until AD 1300, at which point, the land-use strategy shifted towards less frequent burning of savannas and raised fields. Alongside a reduction in the use of fire, sweet potato cultivation and the exploitation of Inga fruits formed part of a mixed resource strategy from AD 1300 to 1450. The pre-Columbian impact on the landscape began to lessen around AD 1450, as shown by an increase in savanna trees and gallery forest. Although agriculture at the site began to decline prior to European arrival, the abandonment of raised fields was protracted, with evidence of sweet potato cultivation occurring as late as AD 1800.
Resumo:
Increasing population size and demand for food in the developing world is driving the intensification ofagriculture, often threatening the biodiversity within the farmland itself and in the surrounding land-scape. This paper quantifies bird and tree species richness, tree carbon and farmer’s gross income, andinteractions between these four variables, across an agricultural gradient in central Uganda. We showedthat higher cultivation intensities in farmed landscapes resulted in increased income but also a declinein species richness of birds and trees, and reductions in tree carbon storage. These declines were particu-larly marked with a shift from high intensity smallholder mixed cropping to plantation style agriculture.This was especially evident for birds where significant declines only occurred in plantations. Small scalefarming will likely continue to be a key source of cash income for the rural populations, and ensuring‘sustained agricultural growth’ within such systems while minimising negative impacts on biodiversityand other key ecosystem services will be a major future challenge.
Resumo:
Cerrãdo savannas have the greatest fire activity of all major global land-cover types and play a significant role in the global carbon cycle. During the 21st century, temperatures are projected to increase by ∼ 3 ◦C coupled with a precipitation decrease of ∼ 20 %. Although these conditions could potentially intensify drought stress, it is unknown how that might alter vegetation composition and fire regimes. To assess how Neotropical savannas responded to past climate changes, a 14 500-year, high-resolution, sedimentary record from Huanchaca Mesetta, a palm swamp located in the cerrãdo savanna in northeastern Bolivia, was analyzed with phytoliths, stable isotopes, and charcoal. A nonanalogue, cold-adapted vegetation community dominated the Lateglacial–early Holocene period (14 500–9000 cal yr BP, which included trees and C3 Pooideae and C4 Panicoideae grasses. The Lateglacial vegetation was fire-sensitive and fire activity during this period was low, likely responding to fuel availability and limitation. Although similar vegetation characterized the early Holocene, the warming conditions associated with the onset of the Holocene led to an initial increase in fire activity. Huanchaca Mesetta became increasingly firedependent during the middle Holocene with the expansion of C4 fire-adapted grasses. However, as warm, dry conditions, characterized by increased length and severity of the dry season, continued, fuel availability decreased. The establishment of the modern palm swamp vegetation occurred at 5000 cal yr BP. Edaphic factors are the first-order control on vegetation on the rocky quartzite mesetta. Where soils are sufficiently thick, climate is the second-order control of vegetation on the mesetta. The presence of the modern palm swamp is attributed to two factors: (1) increased precipitation that increased water table levels and (2) decreased frequency and duration of surazos (cold wind incursions from Patagonia) leading to increased temperature minima. Natural (soil, climate, fire) drivers rather than anthropogenic drivers control the vegetation and fire activity at Huanchaca Mesetta. Thus the cerrãdo savanna ecosystem of the Huanchaca Plateau has exhibited ecosystem resilience to major climatic changes in both temperature and precipitation since the Lateglacial period.
Resumo:
Plant species can condition the physico-chemical and biological properties of soil in ways that modify plant growth via plant–soil feedback (PSF). Plant growth can be positively affected, negatively affected or neutrally affected by soil conditioning by the same or other plant species. Soil conditioning by other plant species has particular relevance to ecological restoration of historic ecosystems because sites set aside for restoration are often conditioned by other, potentially non-native, plant species. We investigated changes in properties of jarrah forest soils after long-term (35 years) conditioning by pines (Pinus radiata), Sydney blue gums (Eucalyptus saligna), both non-native, plantation trees, and jarrah (Eucalyptus marginata; dominant native tree). Then, we tested the influence of the conditioned soils on the growth of jarrah seedlings. Blue gums and pines similarly conditioned the physico-chemical properties of soils, which differed from soil conditioning caused by jarrah. Especially important were the differences in conditioning of the properties C:N ratio, pH, and available K. The two eucalypt species similarly conditioned the biological properties of soil (i.e. community level physiological profile, numbers of fungal-feeding nematodes, omnivorous nematodes, and nematode channel ratio), and these differed from conditioning caused by pines. Species-specific conditioning of soil did not translate into differences in the amounts of biomass produced by jarrah seedlings and a neutral PSF was observed. In summary, we found that decades of soil conditioning by non-native plantation trees did not influence the growth of jarrah seedlings and will therefore not limit restoration of jarrah following the removal of the plantation trees.
Resumo:
Arbuscular mycorrhizal fungi (AMF) are crucial to the functioning of the plant–soil system, but little is known about the spatial structuring of AMF communities across landscapes modified by agriculture. AMF community composition was characterized across four sites in the highly cleared south-western Australian wheatbelt that were originally dominated by forb-rich eucalypt woodlands. Environmentally induced spatial structuring in AMF composition was examined at four scales: the regional scale associated with location, the site scale associated with past management (benchmark woodlands with no agricultural management history, livestock grazing, recent revegetation), the patch scale associated with trees and canopy gaps, and the fine scale associated with the herbaceous plant species beneath which soils were sourced. Field-collected soils were cultured in trap pots; then, AMF composition was determined by identifying spores and through ITS1 sequencing. Structuring was strongest at site scales, where composition was strongly related to prior management and associated changes in soil phosphorus. The two fields were dominated by the genera Funneliformis and Paraglomus, with little convergence back to woodland composition after revegetation. The two benchmark woodlands were characterized by Ambispora gerdemannii and taxa from Gigasporaceae. Their AMF communities were strongly structured at patch scales associated with trees and gaps, in turn most strongly related to soil N. By contrast, there were few patterns at fine scales related to different herbaceous plant species, or at regional scales associated with the 175 km distance between benchmark woodlands. Important areas for future investigation are to identify the circumstances in which recolonization by woodland AMF may be limited by fungal propagule availability, reduced plant diversity and/or altered chemistry in agricultural soils.
Resumo:
Long-term monitoring of forest soils as part of a pan-European network to detect environmental change depends on an accurate determination of the mean of the soil properties at each monitoring event. Forest soil is known to be very variable spatially, however. A study was undertaken to explore and quantify this variability at three forest monitoring plots in Britain. Detailed soil sampling was carried out, and the data from the chemical analyses were analysed by classical statistics and geostatistics. An analysis of variance showed that there were no consistent effects from the sample sites in relation to the position of the trees. The variogram analysis showed that there was spatial dependence at each site for several variables and some varied in an apparently periodic way. An optimal sampling analysis based on the multivariate variogram for each site suggested that a bulked sample from 36 cores would reduce error to an acceptable level. Future sampling should be designed so that it neither targets nor avoids trees and disturbed ground. This can be achieved best by using a stratified random sampling design.
Resumo:
Biologists frequently attempt to infer the character states at ancestral nodes of a phylogeny from the distribution of traits observed in contemporary organisms. Because phylogenies are normally inferences from data, it is desirable to account for the uncertainty in estimates of the tree and its branch lengths when making inferences about ancestral states or other comparative parameters. Here we present a general Bayesian approach for testing comparative hypotheses across statistically justified samples of phylogenies, focusing on the specific issue of reconstructing ancestral states. The method uses Markov chain Monte Carlo techniques for sampling phylogenetic trees and for investigating the parameters of a statistical model of trait evolution. We describe how to combine information about the uncertainty of the phylogeny with uncertainty in the estimate of the ancestral state. Our approach does not constrain the sample of trees only to those that contain the ancestral node or nodes of interest, and we show how to reconstruct ancestral states of uncertain nodes using a most-recent-common-ancestor approach. We illustrate the methods with data on ribonuclease evolution in the Artiodactyla. Software implementing the methods ( BayesMultiState) is available from the authors.
Resumo:
Patterns of substitution in chloroplast encoded trnL_F regions were compared between species of Actaea (Ranunculales), Digitalis (Scrophulariales), Drosera (Caryophyllales), Panicoideae (Poales), the small chromosome species clade of Pelargonium (Geraniales), each representing a different order of flowering plants, and Huperzia (Lycopodiales). In total, the study included 265 taxa, each with > 900-bp sequences, totaling 0.24 Mb. Both pairwise and phylogeny-based comparisons were used to assess nucleotide substitution patterns. In all six groups, we found that transition/transversion ratios, as estimated by maximum likelihood on most-parsimonious trees, ranged between 0.8 and 1.0 for ingroups. These values occurred both at low sequence divergences, where substitutional saturation, i.e., multiple substitutions having occurred at the same (homologous) nucleotide position, was not expected, and at higher levels of divergence. This suggests that the angiosperm trnL-F regions evolve in a pattern different from that generally observed for nuclear and animal mtDNA (transitional/transversion ratio > or = 2). Transition/transversion ratios in the intron and the spacer region differed in all alignments compared, yet base compositions between the regions were highly similar in all six groups. A>-
Resumo:
DNA- and RNA-based polymerase chain reaction (PCR) systems were used with Cacao swollen shoot virus (CSSV) primers designed from conserved regions of the six published genomic sequences of CSSV to investigate whether the virus is transmissible from infected trees through cross-pollination to seeds and seedlings. Pollen was harvested from CSSV infected cocoa trees and used to cross-pollinate flowers of healthy cocoa trees (recipient parents) to generate enough cocoa seeds for the PCR screening. Adequate precautions were taken to avoid cross-contamination during duplicated DNA extractions and only PCR results accompanied by effective positive and negative controls were scored. Results from the PCR analyses showed that samples of cocoa pod husk, mesocarp and seed tissues (testa, cotyledon and embryo) from the cross-pollinations were PCR negative for CSSV DNA. Sequential DNA samples from new leaves of seedlings resulting from the cross-pollinated trees were consistently PCR negative for presence of portions of CSSV DNA for over 36 months after germination. A reverse transcription-PCR analysis performed on the seedlings showed negative results, indicating absence of functional CSSV RNA transcripts in the seedlings. None of the seedlings exhibited symptoms characteristic of the CSSV disease, and all infectivity tests on the seedlings were also negative. Following these results, the study concluded that although CSSV DNA was detected in pollen from CSSV infected trees, there was no evidence of pollen transmission of the virus through cross-pollination from infected cocoa parents to healthy cocoa trees. Keywords:badnavirus;CSSV;PCR;pollen;seed transmission;Theobroma cacao
Resumo:
The Prism family of algorithms induces modular classification rules which, in contrast to decision tree induction algorithms, do not necessarily fit together into a decision tree structure. Classifiers induced by Prism algorithms achieve a comparable accuracy compared with decision trees and in some cases even outperform decision trees. Both kinds of algorithms tend to overfit on large and noisy datasets and this has led to the development of pruning methods. Pruning methods use various metrics to truncate decision trees or to eliminate whole rules or single rule terms from a Prism rule set. For decision trees many pre-pruning and postpruning methods exist, however for Prism algorithms only one pre-pruning method has been developed, J-pruning. Recent work with Prism algorithms examined J-pruning in the context of very large datasets and found that the current method does not use its full potential. This paper revisits the J-pruning method for the Prism family of algorithms and develops a new pruning method Jmax-pruning, discusses it in theoretical terms and evaluates it empirically.
Resumo:
Distributed and collaborative data stream mining in a mobile computing environment is referred to as Pocket Data Mining PDM. Large amounts of available data streams to which smart phones can subscribe to or sense, coupled with the increasing computational power of handheld devices motivates the development of PDM as a decision making system. This emerging area of study has shown to be feasible in an earlier study using technological enablers of mobile software agents and stream mining techniques [1]. A typical PDM process would start by having mobile agents roam the network to discover relevant data streams and resources. Then other (mobile) agents encapsulating stream mining techniques visit the relevant nodes in the network in order to build evolving data mining models. Finally, a third type of mobile agents roam the network consulting the mining agents for a final collaborative decision, when required by one or more users. In this paper, we propose the use of distributed Hoeffding trees and Naive Bayes classifers in the PDM framework over vertically partitioned data streams. Mobile policing, health monitoring and stock market analysis are among the possible applications of PDM. An extensive experimental study is reported showing the effectiveness of the collaborative data mining with the two classifers.
Resumo:
DNA- and RNA-based polymerase chain reaction (PCR) systems were used with Cacao swollen shoot virus (CSSV) primers designed from conserved regions of the six published genomic sequences of CSSV to investigate whether the virus is transmissible from infected trees through cross-pollination to seeds and seedlings. Pollen was harvested from CSSV infected cocoa trees and used to cross-pollinate flowers of healthy cocoa trees (recipient parents) to generate enough cocoa seeds for the PCR screening. Adequate precautions were taken to avoid cross-contamination during duplicated DNA extractions and only PCR results accompanied by effective positive and negative controls were scored. Results from the PCR analyses showed that samples of cocoa pod husk, mesocarp and seed tissues (testa, cotyledon and embryo) from the cross-pollinations were PCR negative for CSSV DNA. Sequential DNA samples from new leaves of seedlings resulting from the cross-pollinated trees were consistently PCR negative for presence of portions of CSSV DNA for over 36 months after germination. A reverse transcription-PCR analysis performed on the seedlings showed negative results, indicating absence of functional CSSV RNA transcripts in the seedlings. None of the seedlings exhibited symptoms characteristic of the CSSV disease, and all infectivity tests on the seedlings were also negative. Following these results, the study concluded that although CSSV DNA was detected in pollen from CSSV infected trees, there was no evidence of pollen transmission of the virus through cross-pollination from infected cocoa parents to healthy cocoa trees.
Resumo:
Postglacial expansion of deciduous oak woodlands of the Zagros—Anti-Taurus Mountains, a major biome of the Near East, was delayed until the middle Holocene at ~6300 cal. yr BP. The current hypotheses explain this delay as a consequence of a regional aridity during the early Holocene, slow migration rates of forest trees, and/or a long history of land use and agro-pastoralism in this region. In the present paper, support is given to a hypothesis that suggests different precipitation seasonalities during the early Holocene compared with the late Holocene. The oak species of the Zagros—Anti-Taurus Mts, particularly Quercus brantii Lindl., are strongly dependent on spring precipitation for regeneration and are sensitive to a long dry season. Detailed analysis of modern atmospheric circulation patterns in SW Asia during the late spring suggests that the Indian Summer Monsoon (ISM) intensification can modify the amount of late spring and/or early summer rainfall in western/northwestern Iran and eastern Anatolia, which could in turn have controlled the development of the Zagros—Anti-Taurus deciduous oak woodlands. During the early Holocene, the northwestward shift of the Inter-Tropical Convergence Zone (ITCZ) could have displaced the subtropical anticyclonic belt or associated high pressure ridges to the northwest. The latter could, in turn, have prevented the southeastward penetration of low pressure systems originating from the North Atlantic and Black Sea regions. Such atmospheric configuration could have reduced or eliminated the spring precipitation creating a typical Mediterranean continental climate characterized by winter-dominated precipitation. This scenario highlights the complexity of biome response to climate system interactions in transitional climatic and biogeographical regions.
Resumo:
The leaf carbon isotope ratio (δ13C) of C3 plants is inversely related to the drawdown of CO2 concentration during photosynthesis, which increases towards drier environments. We aimed to discriminate between the hypothesis of universal scaling, which predicts between-species responses of δ13C to aridity similar to within-species responses, and biotic homoeostasis, which predicts offsets in the δ13C of species occupying adjacent ranges. The Northeast China Transect spans 130–900 mm annual precipitation within a narrow latitude and temperature range. Leaves of 171 species were sampled at 33 sites along the transect (18 at ≥ 5 sites) for dry matter, carbon (C) and nitrogen (N) content, specific leaf area (SLA) and δ13C. The δ13C of species generally followed a common relationship with the climatic moisture index (MI). Offsets between adjacent species were not observed. Trees and forbs diverged slightly at high MI. In C3 plants, δ13C predicted N per unit leaf area (Narea) better than MI. The δ13C of C4 plants was invariant with MI. SLA declined and Narea increased towards low MI in both C3 and C4 plants. The data are consistent with optimal stomatal regulation with respect to atmospheric dryness. They provide evidence for universal scaling of CO2 drawdown with aridity in C3 plants.