23 resultados para Transforming Growth Factor-beta 1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The addition of oligofructose as a dietary fiber decreases the serum concentration and the hepatic release of VLDL-triglycerides in rats. Because glucose, insulin, insulin-like growth factor I (IGF-I) and gut peptides [i.e., glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1)]) are factors involved in the metabolic response to nutrients, this paper analyzes their putative role in the hypolipidemic effect of oligofructose. Male Wistar rats were fed a nonpurified diet with or without 10% oligofructose for 30 d. Glucose, insulin, IGF-I and GIP concentrations were measured in the serum of rats after eating. GIP and GLP-1 contents were also assayed in small intestine and cecal extracts, respectively. A glucose tolerance test was performed in food-deprived rats. Serum insulin level was significantly lower in oligofructose-fed rats both after eating and in the glucose tolerance test, whereas glycemia was lower only in the postprandial state. IGF-I serum level did not differ between groups. GIP concentration was significantly higher in the serum of oligofructose-fed rats. The GLP-1 cecal pool was also significantly higher. In this study, we have shown that cecal proliferation induced by oligofructose leads to an increase in GLP-1 concentration. This latter incretin could be involved in the maintenance of glycemia despite a lower insulinemia in the glucose tolerance test in oligofructose-fed rats. We discuss also the role of hormonal changes in the antilipogenic effect of oligofructose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiac hypertrophy is associated with hypertrophic growth of cardiac myocytes and increased fibrosis. Much is known of the stimuli which promote myocyte hypertrophy and the changes associated with the response, but the links between the two are largely unknown. Using subtractive hybridization, we identified three genes which are acutely (<1 h) upregulated in neonatal rat ventricular myocytes exposed to the alpha-adrenergic agonist, phenylephrine. One represented connective tissue growth factor (CTGF) which is implicated in fibrosis and promotes hypertrophy in other cells. We further examined the expression of CTGF mRNA and protein in cardiac myocytes using quantitative PCR and immunoblotting, confirming that phenylephrine increased CTGF mRNA (maximal within 1 h) and protein (increased over 4 - 24 h). Endothelin-1 promoted a greater, though transient, increase in CTGF mRNA, but the increase in CTGF protein was sustained over 8 h. Neither agonist increased CTGF mRNA in cardiac non-myocytes. By increasing the expression of CTGF in cardiac myocytes, hypertrophic agonists such as phenylephrine and endothelin-1 may promote fibrosis. CTGF may also propagate the hypertrophic response initiated by these agonists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 70kDa ribosomal protein S6 kinase 1 (S6K1) plays important roles in the regulation of protein synthesis, cell growth and metabolism. S6K1 is activated by the phosphorylation of multiple serine and threonine residues in response to stimulation by a variety of growth factors and cytokines. In addition to phosphorylation, we have recently shown that S6K1 is also targeted by lysine acetylation. Here, using tandem mass spectrometry we have mapped acetylation of S6K1 to lysine 516, a site close to the C-terminus of the kinase that is highly conserved amongst vertebrate S6K1 orthologues. Using acetyl-specific K516 antibodies, we show that acetylation of endogenous S6K1 at this site is potently induced upon growth factor stimulation. Although S6K1 acetylation and phosphorylation are both induced by growth factor stimulation, these events appear to be functionally independent. Indeed, experiments using inhibitors of S6K1 activation and exposure of cells to various stresses indicate that S6K1 acetylation can occur in the absence of phosphorylation and vice versa. We propose that K516 acetylation may serve to modulate important kinase-independent functions of S6K1 in response to growth factor signalling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Trophoblast invasion is a temporally and spatially regulated scheme of events that can dictate pregnancy outcome. Evidence suggests that the potent mitogen epidermal growth factor (EGF) regulates cytotrophoblast (CTB) differentiation and invasion during early pregnancy. METHODS AND RESULTS: In the present study, the first trimester extravillous CTB cell line SGHPL-4 was used to investigate the signalling pathways involved in the motile component of EGF-mediated CTB migration/invasion. EGF induced the phosphorylation of the phosphatidylinositol 3-kinase (PI3-K)-dependent proteins, Akt and GSK-3β as well as both p42/44 MAPK and p38 mitogen-activated protein kinases (MAPK). EGF-stimulated motility was significantly reduced following the inhibition of PI3-K (P < 0.001), Akt (P < 0.01) and both p42/44 MAPK (P < 0.001) and p38 MAPKs (P < 0.001) but not the inhibition of GSK-3β. Further analysis indicated that the p38 MAPK inhibitor SB 203580 inhibited EGF-stimulated phosphorylation of Akt on serine 473, which may be responsible for the effect SB 203580 has on CTB motility. Although Akt activation leads to GSK-3β phosphorylation and the subsequent expression of β-catenin, activation of this pathway by 1-azakenpaullone was insufficient to stimulate the motile phenotype. CONCLUSION: We demonstrate a role for PI3-K, p42/44 MAPK and p38 MAPK in the stimulation of CTB cell motility by EGF, however activation of β-catenin alone was insufficient to stimulate cell motility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transforming growth factorβ(TGFβ) superfamily plays an important role in the myocardial response to hypertrophy. We have investigated the protein expression of TGFβ1,β2andβ3in left ventricular tissue, and determined their subcellular distribution in myocytes by immunoblotting and immunocytochemistry during the development of left ventricular hypertrophy (LVH), using isoform specific antibodies to TGFβ1,β2andβ3. LVH was produced in rats by aortic constriction (AC) and LV tissue was obtained at days (d)0, 1, 3, 7, 14, 21 and 42 following operation. Compared with age matched sham-operated controls (SH), TGFβ1levels in LV tissue of AC rats increased significantly from d1–d14 (P<0.03) concomitant with the adaptive growth of LV tissue. In contrast, TGFβ3levels decreased in LV tissue of AC rats from d3 post-operation (significant from d14–d42,P<0.03). No significant difference in TGFβ2levels were observed from SH and AC rats after operation. Antibodies to TGFβ1stained intercalated disks, sarcolemmal membranes and cytoplasm, but not nuclei, of cardiomyocytes on LV sections from untreated and SH rats. However, a trans-localisation of TGFβ1to the nuclei of cardiomyocytes was observed in AC hearts. Antibodies to TGFβ3stained T tubules, cytoplasm and the nuclei of cardiomyocytes from untreated and SH rats. However, by d7 post-AC operation, TGFβ3expression was lost rapidly from nuclei of cardiomyocytes followed by a reduction in total TGFβ3immunofluorescence in myocytes. Antibodies to TGFβ2stained sarcolemmal membranes of cardiomyocytes from both SH and AC rats without significant difference between groups. Thus, the differential pattern of protein expression and subcellular distribution of TGFβ1,β2andβ3in myocytes during the development of LVH suggests that these molecules play different roles in the response of cardiomyocytes to LVH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Fibroblast growth factor 9 (FGF9) is secreted from bone marrow cells, which have been shown to improve systolic function after myocardial infarction (MI) in a clinical trial. FGF9 promotes cardiac vascularization during embryonic development but is only weakly expressed in the adult heart. METHODS AND RESULTS: We used a tetracycline-responsive binary transgene system based on the α-myosin heavy chain promoter to test whether conditional expression of FGF9 in the adult myocardium supports adaptation after MI. In sham-operated mice, transgenic FGF9 stimulated left ventricular hypertrophy with microvessel expansion and preserved systolic and diastolic function. After coronary artery ligation, transgenic FGF9 enhanced hypertrophy of the noninfarcted left ventricular myocardium with increased microvessel density, reduced interstitial fibrosis, attenuated fetal gene expression, and improved systolic function. Heart failure mortality after MI was markedly reduced by transgenic FGF9, whereas rupture rates were not affected. Adenoviral FGF9 gene transfer after MI similarly promoted left ventricular hypertrophy with improved systolic function and reduced heart failure mortality. Mechanistically, FGF9 stimulated proliferation and network formation of endothelial cells but induced no direct hypertrophic effects in neonatal or adult rat cardiomyocytes in vitro. FGF9-stimulated endothelial cell supernatants, however, induced cardiomyocyte hypertrophy via paracrine release of bone morphogenetic protein 6. In accord with this observation, expression of bone morphogenetic protein 6 and phosphorylation of its downstream targets SMAD1/5 were increased in the myocardium of FGF9 transgenic mice. CONCLUSIONS: Conditional expression of FGF9 promotes myocardial vascularization and hypertrophy with enhanced systolic function and reduced heart failure mortality after MI. These observations suggest a previously unrecognized therapeutic potential for FGF9 after MI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Oocytes mature in ovarian follicles surrounded by granulosa cells. During follicle growth, granulosa cells replicate and secrete hormones, particularly steroids close to ovulation. However, most follicles cease growing and undergo atresia or regression instead of ovulating. To investigate the effects of stimulatory (follicle-stimulating hormone; FSH) and inhibitory (tumour necrosis factor alpha; TNFα) factors on the granulosa cell transcriptome, bovine ovaries were obtained from a local abattoir and pools of granulosa cells were cultured in vitro for six days under defined serum-free conditions with treatments present on days 3–6. Initially dose–response experiments (n = 4) were performed to determine the optimal concentrations of FSH (0.33 ng/ml) and TNFα (10 ng/ml) to be used for the microarray experiments. For array experiments cells were cultured under control conditions, with FSH, with TNFα, or with FSH plus TNFα (n = 4 per group) and RNA was harvested for microarray analyses. Results Statistical analysis showed primary clustering of the arrays into two groups, control/FSH and TNFα/TNFα plus FSH. The effect of TNFα on gene expression dominated that of FSH, with substantially more genes differentially regulated, and the pathways and genes regulated by TNFα being similar to those of FSH plus TNFα treatment. TNFα treatment reduced the endocrine activity of granulosa cells with reductions in expression of FST, INHA, INBA and AMH. The top-ranked canonical pathways and GO biological terms for the TNFα treatments included antigen presentation, inflammatory response and other pathways indicative of innate immune function and fibrosis. The two most significant networks also reflect this, containing molecules which are present in the canonical pathways of hepatic fibrosis/hepatic stellate cell activation and transforming growth factor β signalling, and these were up regulated. Upstream regulator analyses also predicted TNF, interferons γ and β1 and interleukin 1β. Conclusions In vitro, the transcriptome of granulosa cells responded minimally to FSH compared with the response to TNFα. The response to TNFα indicated an active process akin to tissue remodelling as would occur upon atresia. Additionally there was reduction in endocrine function and induction of an inflammatory response to TNFα that displays features similar to immune cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rationale: Platelets are anuclear cell fragments derived from bone marrow megakaryocytes (MKs) that safeguard vascular integrity but may also cause pathological vessel occlusion. One major pathway of platelet activation is triggered by 2 receptors that signal through an (hem)immunoreceptor tyrosine-based activation motif (ITAM), the activating collagen receptor glycoprotein (GP) VI and the C-type lectin-like receptor 2 (CLEC-2). Growth factor receptor–bound protein 2 (Grb2) is a ubiquitously expressed adapter molecule involved in signaling processes of numerous receptors in different cell types, but its function in platelets and MKs is unknown. Objective: We tested the hypothesis that Grb2 is a crucial adapter protein in (hem)immunoreceptor tyrosine-based activation motif signaling in platelets. Methods and Results: Here, we show that genetic ablation of Grb2 in MKs and platelets did not interfere with MK differentiation or platelet production. However, Grb2-deficiency severely impaired glycoprotein VI–mediated platelet activation because of defective stabilization of the linker of activated T-cell (LAT) signalosome and activation of downstream signaling proteins that resulted in reduced adhesion, aggregation, and coagulant activity on collagen in vitro. Similarly, CLEC-2–mediated signaling was impaired in Grb2-deficient platelets, whereas the cells responded normally to stimulation of G protein–coupled receptors. In vivo, this selective (hem)immunoreceptor tyrosine-based activation motif signaling defect resulted in prolonged bleeding times but affected arterial thrombus formation only after concomitant treatment with acetylsalicylic acid, indicating that defective glycoprotein VI signaling in the absence of Grb2 can be compensated through thromboxane A2–induced G protein–coupled receptor signaling pathways. Conclusions: These results reveal an important contribution of Grb2 in (hem)immunoreceptor tyrosine-based activation motif signaling in platelets in hemostasis and thrombosis by stabilizing the LAT signalosome.