47 resultados para Traffic Pattern Analysis
Resumo:
1Urban areas are predicted to grow significantly in the foreseeable future because of increasing human population growth. Predicting the impact of urban development and expansion on mammal populations is of considerable interest due to possible effects on biodiversity and human-wildlife conflict. 2The British government has recently announced a substantial housing programme to meet the demands of its growing population and changing socio-economic profile. This is likely to result in the construction of high-density, low-cost housing with small residential gardens. To assess the potential effects of this programme, we analysed the factors affecting the current pattern of use of residential gardens by a range of mammal species using a questionnaire distributed in wildlife and gardening magazines and via The Mammal Society. 3Twenty-two species/species groups were recorded. However, the pattern of garden use by individual species was limited, with only six species/species groups (bats, red fox Vulpes vulpes, grey squirrel Sciurus carolinensis, hedgehog Erinaceus europaeus, mice, voles) recorded as frequent visitors to > 20% of gardens in the survey. 4There was a high degree of association between the variables recorded in the study, such that it was difficult to quantify the effects of individual variables. However, all species/species groups appeared to be negatively affected by the increased fragmentation and reduced proximity of natural and semi-natural habitats, decreasing garden size and garden structure, but to differing degrees. Patterns of garden use were most clearly affected by house location (city, town, village, rural), with garden use declining with increasing urbanization for the majority of species/species groups, except red foxes and grey squirrels. Increasing urbanization is likely to be related to a wide range of interrelated factors, any or all of which may affect a range of mammal species. 5Overall, the probable effects of the planned housing development programme in Britain are not likely to be beneficial to mammal populations, although the pattern of use examined in this study may represent patterns of habitat selection by species rather than differences in distribution or abundance. Consequently, additional data are required on the factors affecting the density of species within urban environments.
Resumo:
We focus on the comparison of three statistical models used to estimate the treatment effect in metaanalysis when individually pooled data are available. The models are two conventional models, namely a multi-level and a model based upon an approximate likelihood, and a newly developed model, the profile likelihood model which might be viewed as an extension of the Mantel-Haenszel approach. To exemplify these methods, we use results from a meta-analysis of 22 trials to prevent respiratory tract infections. We show that by using the multi-level approach, in the case of baseline heterogeneity, the number of clusters or components is considerably over-estimated. The approximate and profile likelihood method showed nearly the same pattern for the treatment effect distribution. To provide more evidence two simulation studies are accomplished. The profile likelihood can be considered as a clear alternative to the approximate likelihood model. In the case of strong baseline heterogeneity, the profile likelihood method shows superior behaviour when compared with the multi-level model. Copyright (C) 2006 John Wiley & Sons, Ltd.
Resumo:
ANeCA is a fully automated implementation of Nested Clade Phylogeographic Analysis. This was originally developed by Templeton and colleagues, and has been used to infer, from the pattern of gene sequence polymorphisms in a geographically structured population, the historical demographic processes that have shaped its evolution. Until now it has been necessary to perform large parts of the procedure manually. We provide a program that will take data in Nexus sequential format, and directly output a set of inferences. The software also includes TCS v1.18 and GeoDis v2.2 as part of automation.
Resumo:
We have investigated the role of glycosylation of the envelope glycoprotein E2 of bovine viral diarrhoea virus (BVDV), produced in insect cells, in BVDV infection. When amino acids predicated to code for the C-terminal N-linked glycosylation site were mutated the resulting protein was less efficient than wild type protein at preventing infection of susceptible cells with BVDV. In addition, mutational analysis showed that a further two predicted N-terminal N-linked glycosylation sites of E2 are required for efficient production of recombinant protein. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Inferring the spatial expansion dynamics of invading species from molecular data is notoriously difficult due to the complexity of the processes involved. For these demographic scenarios, genetic data obtained from highly variable markers may be profitably combined with specific sampling schemes and information from other sources using a Bayesian approach. The geographic range of the introduced toad Bufo marinus is still expanding in eastern and northern Australia, in each case from isolates established around 1960. A large amount of demographic and historical information is available on both expansion areas. In each area, samples were collected along a transect representing populations of different ages and genotyped at 10 microsatellite loci. Five demographic models of expansion, differing in the dispersal pattern for migrants and founders and in the number of founders, were considered. Because the demographic history is complex, we used an approximate Bayesian method, based on a rejection-regression algorithm. to formally test the relative likelihoods of the five models of expansion and to infer demographic parameters. A stepwise migration-foundation model with founder events was statistically better supported than other four models in both expansion areas. Posterior distributions supported different dynamics of expansion in the studied areas. Populations in the eastern expansion area have a lower stable effective population size and have been founded by a smaller number of individuals than those in the northern expansion area. Once demographically stabilized, populations exchange a substantial number of effective migrants per generation in both expansion areas, and such exchanges are larger in northern than in eastern Australia. The effective number of migrants appears to be considerably lower than that of founders in both expansion areas. We found our inferences to be relatively robust to various assumptions on marker. demographic, and historical features. The method presented here is the only robust, model-based method available so far, which allows inferring complex population dynamics over a short time scale. It also provides the basis for investigating the interplay between population dynamics, drift, and selection in invasive species.
Resumo:
Objectives: Does artichoke leaf extract (ALE) ameliorate symptoms of Irritable bowel syndrome (IBS) in otherwise healthy volunteers suffering concomitant dyspepsia? Methods: A subset analysis of a previous dose-ranging, open, postal study, in adults suffering dyspepsia. Two hundred and eight (208) adults were identified post hoc as suffering with IBS. IBS incidence, self-reported usual bowel pattern, and the Nepean Dyspepsia Index (NDI) were compared before and after a 2-month intervention period. Results: There was a significant fall in IBS incidence of 26.4% (p<0.001) after treatment. A significant shift in self-reported usual bowel pattern away from "alternating constipation/diarrhea" toward "normal" (p<0.001) was observed. NDI total symptom score significantly decreased by 41% (p<0.001) after treatment. Similarly, there was a significant 20% improvement in the NDI total quality-of-life (QOL) score in the subset after treatment. Conclusion: This report supports previous findings that ALE ameliorates symptoms of IBS, plus improves health-related QOL.
Resumo:
In this paper, we address issues in segmentation Of remotely sensed LIDAR (LIght Detection And Ranging) data. The LIDAR data, which were captured by airborne laser scanner, contain 2.5 dimensional (2.5D) terrain surface height information, e.g. houses, vegetation, flat field, river, basin, etc. Our aim in this paper is to segment ground (flat field)from non-ground (houses and high vegetation) in hilly urban areas. By projecting the 2.5D data onto a surface, we obtain a texture map as a grey-level image. Based on the image, Gabor wavelet filters are applied to generate Gabor wavelet features. These features are then grouped into various windows. Among these windows, a combination of their first and second order of statistics is used as a measure to determine the surface properties. The test results have shown that ground areas can successfully be segmented from LIDAR data. Most buildings and high vegetation can be detected. In addition, Gabor wavelet transform can partially remove hill or slope effects in the original data by tuning Gabor parameters.
Resumo:
Objective: This paper presents a detailed study of fractal-based methods for texture characterization of mammographic mass lesions and architectural distortion. The purpose of this study is to explore the use of fractal and lacunarity analysis for the characterization and classification of both tumor lesions and normal breast parenchyma in mammography. Materials and methods: We conducted comparative evaluations of five popular fractal dimension estimation methods for the characterization of the texture of mass lesions and architectural distortion. We applied the concept of lacunarity to the description of the spatial distribution of the pixel intensities in mammographic images. These methods were tested with a set of 57 breast masses and 60 normal breast parenchyma (dataset1), and with another set of 19 architectural distortions and 41 normal breast parenchyma (dataset2). Support vector machines (SVM) were used as a pattern classification method for tumor classification. Results: Experimental results showed that the fractal dimension of region of interest (ROIs) depicting mass lesions and architectural distortion was statistically significantly lower than that of normal breast parenchyma for all five methods. Receiver operating characteristic (ROC) analysis showed that fractional Brownian motion (FBM) method generated the highest area under ROC curve (A z = 0.839 for dataset1, 0.828 for dataset2, respectively) among five methods for both datasets. Lacunarity analysis showed that the ROIs depicting mass lesions and architectural distortion had higher lacunarities than those of ROIs depicting normal breast parenchyma. The combination of FBM fractal dimension and lacunarity yielded the highest A z value (0.903 and 0.875, respectively) than those based on single feature alone for both given datasets. The application of the SVM improved the performance of the fractal-based features in differentiating tumor lesions from normal breast parenchyma by generating higher A z value. Conclusion: FBM texture model is the most appropriate model for characterizing mammographic images due to self-affinity assumption of the method being a better approximation. Lacunarity is an effective counterpart measure of the fractal dimension in texture feature extraction in mammographic images. The classification results obtained in this work suggest that the SVM is an effective method with great potential for classification in mammographic image analysis.
Resumo:
A first step in interpreting the wide variation in trace gas concentrations measured over time at a given site is to classify the data according to the prevailing weather conditions. In order to classify measurements made during two intensive field campaigns at Mace Head, on the west coast of Ireland, an objective method of assigning data to different weather types has been developed. Air-mass back trajectories calculated using winds from ECMWF analyses, arriving at the site in 1995–1997, were allocated to clusters based on a statistical analysis of the latitude, longitude and pressure of the trajectory at 12 h intervals over 5 days. The robustness of the analysis was assessed by using an ensemble of back trajectories calculated for four points around Mace Head. Separate analyses were made for each of the 3 years, and for four 3-month periods. The use of these clusters in classifying ground-based ozone measurements at Mace Head is described, including the need to exclude data which have been influenced by local perturbations to the regional flow pattern, for example, by sea breezes. Even with a limited data set, based on 2 months of intensive field measurements in 1996 and 1997, there are statistically significant differences in ozone concentrations in air from the different clusters. The limitations of this type of analysis for classification and interpretation of ground-based chemistry measurements are discussed.
Resumo:
The Stochastic Diffusion Search (SDS) was developed as a solution to the best-fit search problem. Thus, as a special case it is capable of solving the transform invariant pattern recognition problem. SDS is efficient and, although inherently probabilistic, produces very reliable solutions in widely ranging search conditions. However, to date a systematic formal investigation of its properties has not been carried out. This thesis addresses this problem. The thesis reports results pertaining to the global convergence of SDS as well as characterising its time complexity. However, the main emphasis of the work, reports on the resource allocation aspect of the Stochastic Diffusion Search operations. The thesis introduces a novel model of the algorithm, generalising an Ehrenfest Urn Model from statistical physics. This approach makes it possible to obtain a thorough characterisation of the response of the algorithm in terms of the parameters describing the search conditions in case of a unique best-fit pattern in the search space. This model is further generalised in order to account for different search conditions: two solutions in the search space and search for a unique solution in a noisy search space. Also an approximate solution in the case of two alternative solutions is proposed and compared with predictions of the extended Ehrenfest Urn model. The analysis performed enabled a quantitative characterisation of the Stochastic Diffusion Search in terms of exploration and exploitation of the search space. It appeared that SDS is biased towards the latter mode of operation. This novel perspective on the Stochastic Diffusion Search lead to an investigation of extensions of the standard SDS, which would strike a different balance between these two modes of search space processing. Thus, two novel algorithms were derived from the standard Stochastic Diffusion Search, ‘context-free’ and ‘context-sensitive’ SDS, and their properties were analysed with respect to resource allocation. It appeared that they shared some of the desired features of their predecessor but also possessed some properties not present in the classic SDS. The theory developed in the thesis was illustrated throughout with carefully chosen simulations of a best-fit search for a string pattern, a simple but representative domain, enabling careful control of search conditions.
Resumo:
In this paper we present a connectionist searching technique - the Stochastic Diffusion Search (SDS), capable of rapidly locating a specified pattern in a noisy search space. In operation SDS finds the position of the pre-specified pattern or if it does not exist - its best instantiation in the search space. This is achieved via parallel exploration of the whole search space by an ensemble of agents searching in a competitive cooperative manner. We prove mathematically the convergence of stochastic diffusion search. SDS converges to a statistical equilibrium when it locates the best instantiation of the object in the search space. Experiments presented in this paper indicate the high robustness of SDS and show good scalability with problem size. The convergence characteristic of SDS makes it a fully adaptive algorithm and suggests applications in dynamically changing environments.
Resumo:
An algorithm for tracking multiple feature positions in a dynamic image sequence is presented. This is achieved using a combination of two trajectory-based methods, with the resulting hybrid algorithm exhibiting the advantages of both. An optimizing exchange algorithm is described which enables short feature paths to be tracked without prior knowledge of the motion being studied. The resulting partial trajectories are then used to initialize a fast predictor algorithm which is capable of rapidly tracking multiple feature paths. As this predictor algorithm becomes tuned to the feature positions being tracked, it is shown how the location of occluded or poorly detected features can be predicted. The results of applying this tracking algorithm to data obtained from real-world scenes are then presented.
Resumo:
Basic Network transactions specifies that datagram from source to destination is routed through numerous routers and paths depending on the available free and uncongested paths which results in the transmission route being too long, thus incurring greater delay, jitter, congestion and reduced throughput. One of the major problems of packet switched networks is the cell delay variation or jitter. This cell delay variation is due to the queuing delay depending on the applied loading conditions. The effect of delay, jitter accumulation due to the number of nodes along transmission routes and dropped packets adds further complexity to multimedia traffic because there is no guarantee that each traffic stream will be delivered according to its own jitter constraints therefore there is the need to analyze the effects of jitter. IP routers enable a single path for the transmission of all packets. On the other hand, Multi-Protocol Label Switching (MPLS) allows separation of packet forwarding and routing characteristics to enable packets to use the appropriate routes and also optimize and control the behavior of transmission paths. Thus correcting some of the shortfalls associated with IP routing. Therefore MPLS has been utilized in the analysis for effective transmission through the various networks. This paper analyzes the effect of delay, congestion, interference, jitter and packet loss in the transmission of signals from source to destination. In effect the impact of link failures, repair paths in the various physical topologies namely bus, star, mesh and hybrid topologies are all analyzed based on standard network conditions.