33 resultados para Traffic Breakdown


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To estimate the impact of emissions by road, aircraft and ship traffic on ozone and OH in the present-day atmosphere six different atmospheric chemistry models have been used. Based on newly developed global emission inventories for road, ship and aircraft emission data sets each model performed sensitivity simulations reducing the emissions of each transport sector by 5%. The model results indicate that on global annual average lower tropospheric ozone responds most sensitive to ship emissions (50.6%±10.9% of the total traffic induced perturbation), followed by road (36.7%±9.3%) and aircraft exhausts (12.7%±2.9%), respectively. In the northern upper troposphere between 200–300 hPa at 30–60° N the maximum impact from road and ship are 93% and 73% of the maximum effect of aircraft, respectively. The latter is 0.185 ppbv for ozone (for the 5% case) or 3.69 ppbv when scaling to 100%. On the global average the impact of road even dominates in the UTLS-region. The sensitivity of ozone formation per NOx molecule emitted is highest for aircraft exhausts. The local maximum effect of the summed traffic emissions on the ozone column predicted by the models is 0.2 DU and occurs over the northern subtropical Atlantic extending to central Europe. Below 800 hPa both ozone and OH respond most sensitively to ship emissions in the marine lower troposphere over the Atlantic. Based on the 5% perturbation the effect on ozone can exceed 0.6% close to the marine surface (global zonal mean) which is 80% of the total traffic induced ozone perturbation. In the southern hemisphere ship emissions contribute relatively strongly to the total ozone perturbation by 60%–80% throughout the year. Methane lifetime changes against OH are affected strongest by ship emissions up to 0.21 (± 0.05)%, followed by road (0.08 (±0.01)%) and air traffic (0.05 (± 0.02)%). Based on the full scale ozone and methane perturbations positive radiative forcings were calculated for road emissions (7.3±6.2 mWm−2) and for aviation (2.9±2.3 mWm−2). Ship induced methane lifetime changes dominate over the ozone forcing and therefore lead to a net negative forcing (−25.5±13.2 mWm−2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, various efforts have been made in air traffic control (ATC) to maintain traffic safety and efficiency in the face of increasing air traffic demands. ATC is a complex process that depends to a large degree on human capabilities, and so understanding how controllers carry out their tasks is an important issue in the design and development of ATC systems. In particular, the human factor is considered to be a serious problem in ATC safety and has been identified as a causal factor in both major and minor incidents. There is, therefore, a need to analyse the mechanisms by which errors occur due to complex factors and to develop systems that can deal with these errors. From the cognitive process perspective, it is essential that system developers have an understanding of the more complex working processes that involve the cooperative work of multiple controllers. Distributed cognition is a methodological framework for analysing cognitive processes that span multiple actors mediated by technology. In this research, we attempt to analyse and model interactions that take place in en route ATC systems based on distributed cognition. We examine the functional problems in an ATC system from a human factors perspective, and conclude by identifying certain measures by which to address these problems. This research focuses on the analysis of air traffic controllers' tasks for en route ATC and modelling controllers' cognitive processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For data assimilation in numerical weather prediction, the initial forecast-error covariance matrix Pf is required. For variational assimilation it is particularly important to prescribe an accurate initial matrix Pf, since Pf is either static (in the 3D-Var case) or constant at the beginning of each assimilation window (in the 4D-Var case). At large scales the atmospheric flow is well approximated by hydrostatic balance and this balance is strongly enforced in the initial matrix Pf used in operational variational assimilation systems such as that of the Met Office. However, at convective scales this balance does not necessarily hold any more. Here we examine the extent to which hydrostatic balance is valid in the vertical forecast-error covariances for high-resolution models in order to determine whether there is a need to relax this balance constraint in convective-scale data assimilation. We use the Met Office Global and Regional Ensemble Prediction System (MOGREPS) and a 1.5 km resolution version of the Unified Model for a case study characterized by the presence of convective activity. An ensemble of high-resolution forecasts valid up to three hours after the onset of convection is produced. We show that at 1.5 km resolution hydrostatic balance does not hold for forecast errors in regions of convection. This indicates that in the presence of convection hydrostatic balance should not be enforced in the covariance matrix used for variational data assimilation at this scale. The results show the need to investigate covariance models that may be better suited for convective-scale data assimilation. Finally, we give a measure of the balance present in the forecast perturbations as a function of the horizontal scale (from 3–90 km) using a set of diagnostics. Copyright © 2012 Royal Meteorological Society and British Crown Copyright, the Met Office

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An ozonesonde profile over the Network for Detection of Stratospheric Change (NDSC) site at Lauder (45.0° S, 169.7° E), New Zealand, for 24 December 1998 showed atypically low ozone centered around 24 km altitude (600 K potential temperature). The origin of the anomaly is explained using reverse domain filling (RDF) calculations combined with a PV/O3 fitting technique applied to ozone measurements from the Polar Ozone and Aerosol Measurement (POAM) III instrument. The RDF calculations for two isentropic surfaces, 550 and 600 K, show that ozone-poor air from the Antarctic polar vortex reached New Zealand on 24–26 December 1998. The vortex air on the 550 K isentrope originated in the ozone hole region, unlike the air on 600 K where low ozone values were caused by dynamical effects. High-resolution ozone maps were generated, and their examination shows that a vortex remnant situated above New Zealand was the cause of the altered ozone profile on 24 December. The maps also illustrate mixing of the vortex filaments into southern midlatitudes, whereby the overall mid-latitude ozone levels were decreased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many virulence organelles of Gram-negative bacterial pathogens are assembled via the chaperone/ usher pathway. The chaperone transports organelle subunits across the periplasm to the outer membrane usher, where they are released and incorporated into growing fibers. Here, we elucidate the mechanism of the usher-targeting step in assembly of the Yersinia pestis F1 capsule at the atomic level. The usher interacts almost exclusively with the chaperone in the chaperone:subunit complex. In free chaperone, a pair of conserved proline residues at the beginning of the subunit-binding loop form a ‘‘proline lock’’ that occludes the usher-binding surface and blocks usher binding. Binding of the subunit to the chaperone rotates the proline lock away from the usher-binding surface, allowing the chaperone-subunit complex to bind to the usher. We show that the proline lock exists in other chaperone/usher systems and represents a general allosteric mechanism for selective targeting of chaperone:subunit complexes to the usher and for release and recycling of the free chaperone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Southern Hemisphere (SH) polar mesospheric clouds (PMCs), also known as noctilucent clouds, have been observed to be more variable and, in general, dimmer than their Northern Hemisphere (NH) counterparts. The precise cause of these hemispheric differences is not well understood. This paper focuses on one aspect of the hemispheric differences: the timing of the PMC season onset. Observations from the Aeronomy of Ice in the Mesosphere satellite indicate that in recent years the date on which the PMC season begins varies much more in the SH than in the NH. Using the Canadian Middle Atmosphere Model, we show that the generation of sufficiently low temperatures necessary for cloud formation in the SH summer polar mesosphere is perturbed by year‐to‐year variations in the timing of the late‐spring breakdown of the SH stratospheric polar vortex. These stratospheric variations, which persist until the end of December, influence the propagation of gravity waves up to the mesosphere. This adds a stratospheric control to the temperatures in the polar mesopause region during early summer, which causes the onset of PMCs to vary from one year to another. This effect is much stronger in the SH than in the NH because the breakdown of the polar vortex occurs much later in the SH, closer in time to the PMC season.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The planning of semi-autonomous vehicles in traffic scenarios is a relatively new problem that contributes towards the goal of making road travel by vehicles free of human drivers. An algorithm needs to ensure optimal real time planning of multiple vehicles (moving in either direction along a road), in the presence of a complex obstacle network. Unlike other approaches, here we assume that speed lanes are not present and that different lanes do not need to be maintained for inbound and outbound traffic. Our basic hypothesis is to carry forward the planning task to ensure that a sufficient distance is maintained by each vehicle from all other vehicles, obstacles and road boundaries. We present here a 4-layer planning algorithm that consists of road selection (for selecting the individual roads of traversal to reach the goal), pathway selection (a strategy to avoid and/or overtake obstacles, road diversions and other blockages), pathway distribution (to select the position of a vehicle at every instance of time in a pathway), and trajectory generation (for generating a curve, smooth enough, to allow for the maximum possible speed). Cooperation between vehicles is handled separately at the different levels, the aim being to maximize the separation between vehicles. Simulated results exhibit behaviours of smooth, efficient and safe driving of vehicles in multiple scenarios; along with typical vehicle behaviours including following and overtaking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is considerable interest in the use of porous asphalt (PA) surfacing on highways since physical and subjective assessments of noise have indicated a significant advantage over conventional non-porous surfaces such as hot rolled asphalt (HRA) used widely for motorway surfacing in the UK. However, it was not known whether the benefit of the PA surface was affected by the presence of roadside barriers. Noise predictions have been made using the Boundary Element Method (BEM) approach to determine the extent to which the noise reducing benefits of PA could be added to the screening effects of noise barriers in order to obtain the overall reduction in noise levels

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TGR5 is a G protein-coupled receptor that mediates bile acid (BA) effects on energy balance, inflammation, digestion and sensation. The mechanisms and spatiotemporal control of TGR5 signaling are poorly understood. We investigated TGR5 signaling and trafficking in transfected HEK293 cells and colonocytes (NCM460) that endogenously express TGR5. BAs (deoxycholic acid, DCA, taurolithocholic acid, TLCA) and the selective agonists oleanolic acid (OA) and 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N, 5-dimethylisoxazole-4-carboxamide (CCDC) stimulated cAMP formation but did not induce TGR5 endocytosis or recruitment of β-arrestins, assessed by confocal microscopy. DCA, TLCA and OA did not stimulate TGR5 association with β-arrestin 1/2 or G protein-coupled receptor kinase (GRK) 2/5/6, determined by bioluminescence resonance energy transfer. CCDC stimulated a low level of TGR5 interaction with β-arrestin2 and GRK2. DCA induced cAMP formation at the plasma membrane and cytosol, determined using exchange factor directly regulated by cAMP (Epac2)-based reporters, but cAMP signals did not desensitize. AG1478, an inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase, the metalloprotease inhibitor batimastat, and methyl-β-cyclodextrin and filipin, which block lipid raft formation, prevented DCA stimulation of extracellular signal regulated kinase (ERK1/2). BRET analysis revealed TGR5 and EGFR interactions that were blocked by disruption of lipid rafts. DCA stimulated TGR5 redistribution to plasma membrane microdomains, localized by immunogold electron microscopy. Thus, TGR5 does not interact with β-arrestins, desensitize or traffic to endosomes. TGR5 signals from plasma membrane rafts that facilitate EGFR interaction and transactivation. An understanding of the spatiotemporal control of TGR5 signaling provides insights into the actions of BAs and therapeutic TGR5 agonists/antagonists.