59 resultados para Tracking and trailing.
Resumo:
This paper describes the crowd image analysis challenge that forms part of the PETS 2009 workshop. The aim of this challenge is to use new or existing systems for i) crowd count and density estimation, ii) tracking of individual(s) within a crowd, and iii) detection of separate flows and specific crowd events, in a real-world environment. The dataset scenarios were filmed from multiple cameras and involve multiple actors.
Resumo:
This paper presents the results of the crowd image analysis challenge of the Winter PETS 2009 workshop. The evaluation is carried out using a selection of the metrics developed in the Video Analysis and Content Extraction (VACE) program and the CLassification of Events, Activities, and Relationships (CLEAR) consortium [13]. The evaluation highlights the detection and tracking performance of the authors’systems in areas such as precision, accuracy and robustness. The performance is also compared to the PETS 2009 submitted results.
Resumo:
Proactive motion in hand tracking and in finger bending, in which the body motion occurs prior to the reference signal, was reported by the preceding researchers when the target signals were shown to the subjects at relatively high speed or high frequencies. These phenomena indicate that the human sensory-motor system tends to choose an anticipatory mode rather than a reactive mode, when the target motion is relatively fast. The present research was undertaken to study what kind of mode appears in the sensory-motor system when two persons were asked to track the hand position of the partner with each other at various mean tracking frequency. The experimental results showed a transition from a mutual error-correction mode to a synchronization mode occurred in the same region of the tracking frequency with that of the transition from a reactive error-correction mode to a proactive anticipatory mode in the mechanical target tracking experiments. Present research indicated that synchronization of body motion occurred only when both of the pair subjects operated in a proactive anticipatory mode. We also presented mathematical models to explain the behavior of the error-correction mode and the synchronization mode.
Resumo:
This paper presents a quantitative evaluation of a tracking system on PETS 2015 Challenge datasets using well-established performance measures. Using the existing tools, the tracking system implements an end-to-end pipeline that include object detection, tracking and post- processing stages. The evaluation results are presented on the provided sequences of both ARENA and P5 datasets of PETS 2015 Challenge. The results show an encouraging performance of the tracker in terms of accuracy but a greater tendency of being prone to cardinality error and ID changes on both datasets. Moreover, the analysis show a better performance of the tracker on visible imagery than on thermal imagery.
Resumo:
Several pixel-based people counting methods have been developed over the years. Among these the product of scale-weighted pixel sums and a linear correlation coefficient is a popular people counting approach. However most approaches have paid little attention to resolving the true background and instead take all foreground pixels into account. With large crowds moving at varying speeds and with the presence of other moving objects such as vehicles this approach is prone to problems. In this paper we present a method which concentrates on determining the true-foreground, i.e. human-image pixels only. To do this we have proposed, implemented and comparatively evaluated a human detection layer to make people counting more robust in the presence of noise and lack of empty background sequences. We show the effect of combining human detection with a pixel-map based algorithm to i) count only human-classified pixels and ii) prevent foreground pixels belonging to humans from being absorbed into the background model. We evaluate the performance of this approach on the PETS 2009 dataset using various configurations of the proposed methods. Our evaluation demonstrates that the basic benchmark method we implemented can achieve an accuracy of up to 87% on sequence ¿S1.L1 13-57 View 001¿ and our proposed approach can achieve up to 82% on sequence ¿S1.L3 14-33 View 001¿ where the crowd stops and the benchmark accuracy falls to 64%.
Resumo:
This paper describes the crowd image analysis challenge that forms part of the PETS 2009 workshop. The aim of this challenge is to use new or existing systems for i) crowd count and density estimation, ii) tracking of individual(s) within a crowd, and iii) detection of separate flows and specific crowd events, in a real-world environment. The dataset scenarios were filmed from multiple cameras and involve multiple actors.
Resumo:
This paper presents the results of the crowd image analysis challenge, as part of the PETS 2009 workshop. The evaluation is carried out using a selection of the metrics available in the Video Analysis and Content Extraction (VACE) program and the CLassification of Events, Activities, and Relationships (CLEAR) consortium. The evaluation highlights the strengths of the authors’ systems in areas such as precision, accuracy and robustness.
Resumo:
In this paper, we evaluate the Probabilistic Occupancy Map (POM) pedestrian detection algorithm on the PETS 2009 benchmark dataset. POM is a multi-camera generative detection method, which estimates ground plane occupancy from multiple background subtraction views. Occupancy probabilities are iteratively estimated by fitting a synthetic model of the background subtraction to the binary foreground motion. Furthermore, we test the integration of this algorithm into a larger framework designed for understanding human activities in real environments. We demonstrate accurate detection and localization on the PETS dataset, despite suboptimal calibration and foreground motion segmentation input.
Resumo:
The Gram-Schmidt (GS) orthogonalisation procedure has been used to improve the convergence speed of least mean square (LMS) adaptive code-division multiple-access (CDMA) detectors. However, this algorithm updates two sets of parameters, namely the GS transform coefficients and the tap weights, simultaneously. Because of the additional adaptation noise introduced by the former, it is impossible to achieve the same performance as the ideal orthogonalised LMS filter, unlike the result implied in an earlier paper. The authors provide a lower bound on the minimum achievable mean squared error (MSE) as a function of the forgetting factor λ used in finding the GS transform coefficients, and propose a variable-λ algorithm to balance the conflicting requirements of good tracking and low misadjustment.
Resumo:
A situation assessment uses reports from sensors to produce hypotheses about a situation at a level of aggregation that is of direct interest to a military commander. A low level of aggregation could mean forming tracks from reports, which is well documented in the tracking literature as track initiation and data association. In this paper there is also discussion on higher level aggregation; assessing the membership of tracks to larger groups. Ideas used in joint tracking and identification are extended, using multi-entity Bayesian networks to model a number of static variables, of which the identity of a target is one. For higher level aggregation a scheme for hypothesis management is required. It is shown how an offline clustering of vehicles can be reduced to an assignment problem.