56 resultados para Tin sulfide
Resumo:
Aerial oxidation of the novel homocyclic tetratin species [{SnAr2}3SnArBr] (1) [1] (Ar C6H3Et2-2,6) affords the tritin heterocycle [O{Sn(C6H3Et2-2,6)2}3] (2), which has been crystallographically characterised; 2 is the first reported oxatristannacyclobutane, and the first heterocyclic tin species having both tintin and tinheteroatom bonds.
Resumo:
The monomeric tin(II) species SnR2{R = C(SiMe3)2C5H4N-2} reacts with [Os3(H)2(CO)10] in hexane to give [Os3(µ-H)SnR(CO)10]1 quantitatively; 1 is the first formal stannyne complex of the triosmium nucleus, in which the picoline nitrogen is coordinated to the tin atom, and which is itself also reactive, being a potential precursor to high nuclearity SnOs clusters.
Resumo:
The title compound is the first µ-η2-peroxodimetallic species to be characterised for a main group metal, possessing a long peroxo O–O bond, and large C–Sn–C angles, and is an unexpected product from the oxidation of [SnR2][R = CH(SiMe3)2], with a structure analogous to an organic ozonide.
Resumo:
The stannylene [SnR2] (R = CH(SiMe3)2) reacts in different ways with the three dodecacarbonyls of the iron triad: [Fe3(CO)12] gives [Fe2(CO)8(μ-SnR2)], [Ru3(CO)12] gives the planar pentametallic cluster [Ru3(CO)10(μ-SnR2)2], for which a full structural analysis is reported, while [Os3(CO)12] fails to react. Different products are also obtained from three nitrile derivatives: [Fe3-(CO)11(MeCN)] gives [Fe2(CO)6(μ-SnR2)2], which has a structure significantly different from that of known Fe2Sn2 clusters, [Ru3(CO)10(MeCN)2] gives the pentametallic cluster described above, while [Os3(CO)10(MeCN)2] gives the isostructural osmium analogue, which shows the unusual feature of a CO group bridging two osmium atoms.
Resumo:
Cluster expansion of [Os3H2(CO)10] with [SnR2][R = CH(SiMe3)2] take place in high yield to give [Os3SnH2(CO)10R2], the first closed triosmium–main-group metal cluster to be structurally characterized; a novel feature is the presence of a hydrogen atom bridging the tin atom and one of the osmium atoms.
Resumo:
Reaction of Li(CPhCMe2) with SnCl4 or CrCl3·3thf (thf = tetrahydrofuran) affords the isoleptic compounds Sn(CPhCMe2)4 or [Cr(CPhCMe2)4] respectively. The mode of formation and chemical properties are reported for the chromium species, and the structures of the new compounds, both of which have been determined by single-crystal X-ray analysis, are described.
Resumo:
Reaction of tin(II) chloride with Li(CPhCPh2) at –78 °C in diethyl ether–hexane–tetrahydrofuran affords a deep red solution whose colour fades on warming, and which we believe contains the (unstable) first dialkenyltin(II) species. The latter survives long enough at low temperatures to undergo intermolecular oxidative addition, and one such adduct leads ultimately to the formation of Sn(CPhCPh2)3Bun, which has been fully characterised including a crystal and molecular structure study. The mechanism of formation of the final product has been examined and results are reported.
Resumo:
Two novel, monomeric heteroleptic tin(II) derivatives, [Sn{2-[(Me3Si)2C]C5H4N}R] [R = C6H2Pri3-2,4,6 1 or CH(PPh2)2 2], have been prepared, characterised by multinuclear NMR spectroscopies and their molecular structures determined by single crystal X-ray diffraction. Both compounds were prepared from the corresponding heteroleptic tin(II) chloro-analogue, [Sn{2-[(Me3Si)2C]C5H4N}Cl], and thus demonstrate the utility of this compound as a precursor to further examples of heteroleptic tin(II) derivatives: such compounds are often unstable with respect to ligand redistribution. In each case, the central tin(II) is three-co-ordinate. Crystals of trimeric [{Sn(C6H2Pri3-2,4,6)2}3] 3 were found to undergo a solid state phase transition, which may be ascribed to ordering of the ligand isopropyl groups. At 220 K the unit cell is orthorhombic, space group Pna21, compared with monoclinic, space group P21/c, for the same crystals at 298 K, in which there is an effective tripling of the now b (originally c) axis. This result illustrates the extreme crowding generated by this bulky aryl ligand.
Resumo:
Reactions of [Fe3(CO)12] with diaryltin species SnR2(R1= 2,4,6-triisopropylphenyl, R2= 2,6-diethylphenyl, R3= pentamethylphenyl) and with Sn[CH(PPh2)2]2 have been investigated. The tin reagents SnR2(R = R1 or R2) reacted under mild conditions to give in moderate yields the trinuclear species [Fe2(CO)8(µ-SnR12)]1 or [Fe2(CO)8(µ-SnR22)]2, as orange-red crystalline solids, which decompose in air on prolonged exposure. The compound [Fe2(CO)8(µ-SnR42)]3(R4= 2,4,6-triphenylphenyl) can be similarly obtained. Prolonged treatment of the carbonyl with the novel tin reagent SnR32, by contrast, afforded the known compound spiro-[(OC)8Fe2SnFe2(CO)8]4 for which data are briefly reported. Reactions with tin or lead reagents M[CH(PPh2)2]2(M = Sn or Pb) afforded [Fe2(CO)6(µ-CO)(µ-dppm)][dppm = 1,2-bis(diphenylphosphino)methane] rapidly and almost quantitatively. Full crystal and molecular structural data are reported for [Fe2(CO)8(µ-SnR12)] and [Fe2(CO)8(µ-SnR22)]. Mössbauer data are also presented for compounds 1–3, and interpreted in terms of the structural data for these and other systems.
Resumo:
Hydrogen sulfide (H(2)S) has recently been proposed as an endogenous mediator of inflammation and is present in human synovial fluid. This study determined whether primary human articular chondrocytes (HACs) and mesenchymal progenitor cells (MPCs) could synthesize H(2)S in response to pro-inflammatory cytokines relevant to human arthropathies, and to determine the cellular responses to endogenous and pharmacological H(2)S. HACs and MPCs were exposed to IL-1β, IL-6, TNF-α and lipopolysaccharide (LPS). The expression and enzymatic activity of the H(2)S synthesizing enzymes cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) were determined by Western blot and zinc-trap spectrophotometry, respectively. Cellular oxidative stress was induced by H(2)O(2), the peroxynitrite donor SIN-1 and 4-hydroxynonenal (4-HNE). Cell death was assessed by 3-(4,5-dimethyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Mitochondrial membrane potential (DCm) was determined in situ by flow cytometry. Endogenous H(2) S synthesis was inhibited by siRNA-mediated knockdown of CSE and CBS and pharmacological inhibitors D,L-propargylglycine and aminoxyacetate, respectively. Exogenous H(2)S was generated using GYY4137. Under basal conditions HACs and MPCs expressed CBS and CSE and synthesized H(2)S in a CBS-dependent manner, whereas CSE expression and activity was induced by treatment of cells with IL-1β, TNF-α, IL-6 or LPS. Oxidative stress-induced cell death was significantly inhibited by GYY4137 treatment but increased by pharmacological inhibition of H(2)S synthesis or by CBS/CSE-siRNA treatment. These data suggest CSE is an inducible source of H(2)S in cultured HACs and MPCs. H(2)S may represent a novel endogenous mechanism of cytoprotection in the inflamed joint, suggesting a potential opportunity for therapeutic intervention.
Resumo:
Increasing current awareness and understanding of the roles and mechanisms of action of ion channel regulation by H(2)S will open opportunities for therapeutic intervention with clear clinical benefits, and inform future therapies. In addition, more sensitive methods for detecting relevant physiological concentrations of H(2)S will allow for clarification of specific ion channel regulation with reference to physiological or pathophysiological settings.