30 resultados para Time delay
Resumo:
The present study examined the effects of a pre-movement delay on the kinematics of prehension in middle childhood. Twenty-five children between the ages of 5 and 11 years made visually open-loop reaches to two different sized objects at two different distances along the midline. Reaches took place either (i) immediately, or (ii) 2 s after the occlusion of the stimulus. In all age groups, reaches following the pre-movement delay were characterised by longer movement durations, lower peak velocities, larger peak grip apertures and longer time spent in the final slow phase of the movement. This pattern of results suggests that the representations that control the transport and grasp component are affected similarly by delay, and is consistent with the results previously reported for adults. Such representations therefore appear to develop before the age of 5. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper analyzes the delay performance of Enhanced relay-enabled Distributed Coordination Function (ErDCF) for wireless ad hoc networks under ideal condition and in the presence of transmission errors. Relays are nodes capable of supporting high data rates for other low data rate nodes. In ideal channel ErDCF achieves higher throughput and reduced energy consumption compared to IEEE 802.11 Distributed Coordination Function (DCF). This gain is still maintained in the presence of errors. It is also expected of relays to reduce the delay. However, the impact on the delay behavior of ErDCF under transmission errors is not known. In this work, we have presented the impact of transmission errors on delay. It turns out that under transmission errors of sufficient magnitude to increase dropped packets, packet delay is reduced. This is due to increase in the probability of failure. As a result the packet drop time increases, thus reflecting the throughput degradation.
Resumo:
A quasi-optical de-embedding technique for characterizing waveguides is demonstrated using wideband time-resolved terahertz spectroscopy. A transfer function representation is adopted for the description of the signal in the input and output port of the waveguides. The time domain responses were discretised and the waveguide transfer function was obtained through a parametric approach in the z-domain after describing the system with an ARX as well as with a state space model. Prior to the identification procedure, filtering was performed in the wavelet domain to minimize signal distortion and the noise propagating in the ARX and subspace models. The model identification procedure requires isolation of the phase delay in the structure and therefore the time-domain signatures must be firstly aligned with respect to each other before they are compared. An initial estimate of the number of propagating modes was provided by comparing the measured phase delay in the structure with theoretical calculations that take into account the physical dimensions of the waveguide. Models derived from measurements of THz transients in a precision WR-8 waveguide adjustable short will be presented.
Resumo:
The time taken to consider development proposals within the English planning system continues to provoke great policy concern despite a decade of inquiry and policy change. The results of an extensive site-based survey and hedonic modelling exercise across 45 local authorities are reported here. The analysis reveals a slow, uncertain system. It identifies planning delay as a serious problem for housing supply and its ability to respond to increases in demand. Only a relatively limited set of factors seem relevant in explaining differences in times and the results suggest that 80% of councils’ performances are statistically indistinguishable from each other. These findings question the policy emphasis put on rankings of local authorities, though some influence from local politics is apparent. Development control is consistently a lengthy and uncertain process due to its complexity. Therefore, success in lowering planning delay is only likely through radical simplification.
Resumo:
The British system of development control is time-consuming and uncertain in outcome. Moreover, it is becoming increasingly overloaded as it has gradually switched away from being centred on a traditional ‘is it an appropriate land-use?’ type approach to one based on multi-faceted inspections of projects and negotiations over the distribution of the potential financial gains arising from them. Recent policy developments have centred on improving the operation of development control. This paper argues that more fundamental issues may be a stake as well. Important market changes have increased workloads. Furthermore, the UK planning system's institutional framework encourages change to move in specific directions, which is not always helpful. If expectations of increased long-term housing supply are to be met more substantial changes to development control may be essential but hard to achieve.
Resumo:
There is growing international interest in the impact of regulatory controls on the supply of housing The UK has a particularly restrictive planning regime and a detailed and uncertain process of development control linked to it. This paper presents the findings of empirical research on the time taken to gain planning permission for selected recent major housing projects from a sample of local authorities in southern England. The scale of delay found was far greater than is indicated by average official data measuring the extent to which local authorities meet planning delay targets. If these results are representative of the country as a whole, they indicate that planning delay could be a major cause of the slow responsiveness of British housing supply.
Resumo:
In this paper we describe how to cope with the delays inherent in a real time control system for a steerable stereo head/eye platform. A purposive and reactive system requires the use of fast vision algorithms to provide the controller with the error signals to drive the platform. The time-critical implementation of these algorithms is necessary, not only to enable short latency reaction to real world events, but also to provide sufficiently high frequency results with small enough delays that controller remain stable. However, even with precise knowledge of that delay, nonlinearities in the plant make modelling of that plant impossible, thus precluding the use of a Smith Regulator. Moreover, the major delay in the system is in the feedback (image capture and vision processing) rather than feed forward (controller) loop. Delays ranging between 40msecs and 80msecs are common for the simple 2D processes, but might extend to several hundred milliseconds for more sophisticated 3D processes. The strategy presented gives precise control over the gaze direction of the cameras despite the lack of a priori knowledge of the delays involved. The resulting controller is shown to have a similar structure to the Smith Regulator, but with essential modifications.
Resumo:
Dynamic multi-user interactions in a single networked virtual environment suffer from abrupt state transition problems due to communication delays arising from network latency--an action by one user only becoming apparent to another user after the communication delay. This results in a temporal suspension of the environment for the duration of the delay--the virtual world `hangs'--followed by an abrupt jump to make up for the time lost due to the delay so that the current state of the virtual world is displayed. These discontinuities appear unnatural and disconcerting to the users. This paper proposes a novel method of warping times associated with users to ensure that each user views a continuous version of the virtual world, such that no hangs or jumps occur despite other user interactions. Objects passed between users within the environment are parameterized, not by real time, but by a virtual local time, generated by continuously warping real time. This virtual time periodically realigns itself with real time as the virtual environment evolves. The concept of a local user dynamically warping the local time is also introduced. As a result, the users are shielded from viewing discontinuities within their virtual worlds, consequently enhancing the realism of the virtual environment.
Resumo:
There is growing international interest in the impact of regulatory controls on the supply of housing. Most research focuses on the supply impacts of prescribed limits on land use but housing supply may also be affected by the process of planning monitoring and approval but this is hard to measure in detail. The UK has a particularly restrictive planning regime and a detailed and uncertain process of development control linked to it, but does offer the opportunity of detailed site-based investigation of planning delay. This paper presents the findings of empirical research on the time taken to gain planning permission for selected recent major housing projects in southern England. The scale of delay found was far greater than is indicated by average official data measuring the extent to which local authorities meet planning delay targets. Hedonic modelling indicated that there is considerable variation in the time it takes local authorities to process planning applications. Housing association developments are processed more quickly than those of large developers and small sites appear to be particularly time-intensive. These results suggest that delays in development control may be a significant contributory factor to the low responsiveness of UK housing supply to upturns in market activity.
Resumo:
In cooperative communication networks, owing to the nodes' arbitrary geographical locations and individual oscillators, the system is fundamentally asynchronous. This will damage some of the key properties of the space-time codes and can lead to substantial performance degradation. In this paper, we study the design of linear dispersion codes (LDCs) for such asynchronous cooperative communication networks. Firstly, the concept of conventional LDCs is extended to the delay-tolerant version and new design criteria are discussed. Then we propose a new design method to yield delay-tolerant LDCs that reach the optimal Jensen's upper bound on ergodic capacity as well as minimum average pairwise error probability. The proposed design employs stochastic gradient algorithm to approach a local optimum. Moreover, it is improved by using simulated annealing type optimization to increase the likelihood of the global optimum. The proposed method allows for flexible number of nodes, receive antennas, modulated symbols and flexible length of codewords. Simulation results confirm the performance of the newly-proposed delay-tolerant LDCs.
Resumo:
We report findings from psycholinguistic experiments investigating the detailed timing of processing morphologically complex words by proficient adult second (L2) language learners of English in comparison to adult native (L1) speakers of English. The first study employed the masked priming technique to investigate -ed forms with a group of advanced Arabic-speaking learners of English. The results replicate previously found L1/L2 differences in morphological priming, even though in the present experiment an extra temporal delay was offered after the presentation of the prime words. The second study examined the timing of constraints against inflected forms inside derived words in English using the eye-movement monitoring technique and an additional acceptability judgment task with highly advanced Dutch L2 learners of English in comparison to adult L1 English controls. Whilst offline the L2 learners performed native-like, the eye-movement data showed that their online processing was not affected by the morphological constraint against regular plurals inside derived words in the same way as in native speakers. Taken together, these findings indicate that L2 learners are not just slower than native speakers in processing morphologically complex words, but that the L2 comprehension system employs real-time grammatical analysis (in this case, morphological information) less than the L1 system.
Resumo:
The time scale of the response of the high-latitude dayside ionospheric flow to changes in the North-South component of the interplanetary magnetic field (IMF) has been investigated by examining the time delays between corresponding sudden changes. Approximately 40 h of simultaneous IMF and ionospheric flow data have been examined, obtained by the AMPTE-UKS and -IRM spacecraft and the EISCAT “Polar” experiment, respectively, in which 20 corresponding sudden changes have been identified. Ten of these changes were associated with southward turnings of the IMF, and 10 with northward turnings. It has been found that the corresponding flow changes occurred simultaneously over the whole of the “Polar” field-of-view, extending more than 2° in invariant latitude, and that the ionospheric response delay following northward turnings is the same as that following southward turnings, though the form of the response is different in the two cases. The shortest response time, 5.5 ± 3.2 min, is found in the early- to mid-afternoon sector, increasing to 9.5 ± 3.0 min in the mid-morning sector, and to 9.5 ± 3.1 min near to dusk. These times represent the delays in the appearance of perturbed flows in the “Polar” field-of-view following the arrival of IMF changes at the subsolar magnetopause. Overall, the results agree very well with those derived by Etemadi et al. (1988, Planet. Space Sci.36, 471) from a general cross-correlation analysis of the IMF Bz and “Polar” beam-swinging vector flow data.
Resumo:
In 1984 and 1985 a series of experiments was undertaken in which dayside ionospheric flows were measured by the EISCAT “Polar” experiment, while observations of the solar wind and interplanetary magnetic field (IMF) were made by the AMPTE UKS and IRM spacecraft upstream from the Earth's bow shock. As a result, 40 h of simultaneous data were acquired, which are analysed in this paper to investigate the relationship between the ionospheric flow and the North-South (Bz) component of the IMF. The ionospheric flow data have 2.5 min resolution, and cover the dayside local time sector from ∼ 09:30 to ∼ 18:30 M.L.T. and the latitude range from 70.8° to 74.3°. Using cross-correlation analysis it is shown that clear relationships do exist between the ionospheric flow and IMF Bz, but that the form of the relations depends strongly on latitude and local time. These dependencies are readily interpreted in terms of a twinvortex flow pattern in which the magnitude and latitudinal extent of the flows become successively larger as Bz becomes successively more negative. Detailed maps of the flow are derived for a range of Bz values (between ± 4 nT) which clearly demonstrate the presence of these effects in the data. The data also suggest that the morning reversal in the East-West component of flow moves to earlier local times as Bz, declines in value and becomes negative. The correlation analysis also provides information on the ionospheric response time to changes in IMF Bz, it being found that the response is very rapid indeed. The most rapid response occurs in the noon to mid-afternoon sector, where the westward flows of the dusk cell respond with a delay of 3.9 ± 2.2 min to changes in the North-South field at the subsolar magnetopause. The flows appear to evolve in form over the subsequent ~ 5 min interval, however, as indicated by the longer response times found for the northward component of flow in this sector (6.7 ±2.2 min), and in data from earlier and later local times. No evidence is found for a latitudinal gradient in response time; changes in flow take place coherently in time across the entire radar field-of-view.
Resumo:
In cooperative communication networks, owing to the nodes' arbitrary geographical locations and individual oscillators, the system is fundamentally asynchronous. Such a timing mismatch may cause rank deficiency of the conventional space-time codes and, thus, performance degradation. One efficient way to overcome such an issue is the delay-tolerant space-time codes (DT-STCs). The existing DT-STCs are designed assuming that the transmitter has no knowledge about the channels. In this paper, we show how the performance of DT-STCs can be improved by utilizing some feedback information. A general framework for designing DT-STC with limited feedback is first proposed, allowing for flexible system parameters such as the number of transmit/receive antennas, modulated symbols, and the length of codewords. Then, a new design method is proposed by combining Lloyd's algorithm and the stochastic gradient-descent algorithm to obtain optimal codebook of STCs, particularly for systems with linear minimum-mean-square-error receiver. Finally, simulation results confirm the performance of the newly designed DT-STCs with limited feedback.
Resumo:
Anticipating synchronization has been recently proposed as a mechanism of interaction in dynamical systems which are able to bring about predictions of future states of a driver system. We suggest that an interesting insight into the anticipating synchronization can be obtained by the renormalization of the time scale in the driven system. Our approach directly links the feedback delay of the driven system with the renormalized time scale of the driven system, identifying the main component in the anticipating synchronization paradigm and suggesting an alternative method to generate the anticipating and the lagging synchronization.