43 resultados para Three layer integration


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intraseasonal variability (ISV) of the Indian summer monsoon is dominated by a 30–50 day oscillation between “active” and “break” events of enhanced and reduced rainfall over the subcontinent, respectively. These organized convective events form in the equatorial Indian Ocean and propagate north to India. Atmosphere–ocean coupled processes are thought to play a key role the intensity and propagation of these events. A high-resolution, coupled atmosphere–mixed-layer-oceanmodel is assembled: HadKPP. HadKPP comprises the Hadley Centre Atmospheric Model (HadAM3) and the K Profile Parameterization (KPP) mixed-layer ocean model. Following studies that upper-ocean vertical resolution and sub-diurnal coupling frequencies improve the simulation of ISV in SSTs, KPP is run at 1 m vertical resolution near the surface; the atmosphere and ocean are coupled every three hours. HadKPP accurately simulates the 30–50 day ISV in rainfall and SSTs over India and the Bay of Bengal, respectively, but suffers from low ISV on the equator. This is due to the HadAM3 convection scheme producing limited ISV in surface fluxes. HadKPP demonstrates little of the observed northward propagation of intraseasonal events, producing instead a standing oscillation. The lack of equatorial ISV in convection in HadAM3 constrains the ability of KPP to produce equatorial SST anomalies, which further weakens the ISV of convection. It is concluded that while atmosphere–ocean interactions are undoubtedly essential to an accurate simulation of ISV, they are not a panacea for model deficiencies. In regions where the atmospheric forcing is adequate, such as the Bay of Bengal, KPP produces SST anomalies that are comparable to the Tropical Rainfall Measuring Mission Microwave Imager (TMI) SST analyses in both their magnitude and their timing with respect to rainfall anomalies over India. HadKPP also displays a much-improved phase relationship between rainfall and SSTs over a HadAM3 ensemble forced by observed SSTs, when both are compared to observations. Coupling to mixed-layer models such as KPP has the potential to improve operational predictions of ISV, particularly when the persistence time of SST anomalies is shorter than the forecast lead time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[ 1] The local heat content and formation rate of the cold intermediate layer (CIL) in the Gulf of Saint Lawrence are examined using a combination of new in situ wintertime observations and a three-dimensional numerical model. The field observations consist of five moorings located throughout the gulf over the period of November 2002 to June 2003. The observations demonstrate a substantially deeper surface mixed layer in the central and northeast gulf than in regions downstream of the buoyant surface outflow from the Saint Lawrence Estuary. The mixed-layer depth in the estuary remains shallow (< 60 m) throughout winter, with the arrival of a layer of near-freezing waters between 40 and 100 m depth in April. An eddy-permitting ice-ocean model with realistic forcing is used to hindcast the period of observation. The model simulates well the seasonal evolution of mixed-layer depth and CIL heat content. Although the greatest heat losses occur in the northeast, the most significant change in CIL heat content over winter occurs in the Anticosti Trough. The observed renewal of CIL in the estuary in spring is captured by the model. The simulation highlights the role of the northwest gulf, and in particular, the separation of the Gaspe Current, in controlling the exchange of CIL between the estuary and the gulf. In order to isolate the effects of inflow through the Strait of Belle Isle on the CIL heat content, we examine a sensitivity experiment in which the strait is closed. This simulation shows that the inflow has a less important effect on the CIL than was suggested by previous studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the problem of scattering of time-harmonic acoustic waves by an unbounded sound-soft rough surface. Recently, a Brakhage Werner type integral equation formulation of this problem has been proposed, based on an ansatz as a combined single- and double-layer potential, but replacing the usual fundamental solution of the Helmholtz equation with an appropriate half-space Green's function. Moreover, it has been shown in the three-dimensional case that this integral equation is uniquely solvable in the space L-2 (Gamma) when the scattering surface G does not differ too much from a plane. In this paper, we show that this integral equation is uniquely solvable with no restriction on the surface elevation or slope. Moreover, we construct explicit bounds on the inverse of the associated boundary integral operator, as a function of the wave number, the parameter coupling the single- and double-layer potentials, and the maximum surface slope. These bounds show that the norm of the inverse operator is bounded uniformly in the wave number, kappa, for kappa > 0, if the coupling parameter h is chosen proportional to the wave number. In the case when G is a plane, we show that the choice eta = kappa/2 is nearly optimal in terms of minimizing the condition number.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For a nonlocally perturbed half- space we consider the scattering of time-harmonic acoustic waves. A second kind boundary integral equation formulation is proposed for the sound-soft case, based on a standard ansatz as a combined single-and double-layer potential but replacing the usual fundamental solution of the Helmholtz equation with an appropriate half- space Green's function. Due to the unboundedness of the surface, the integral operators are noncompact. In contrast to the two-dimensional case, the integral operators are also strongly singular, due to the slow decay at infinity of the fundamental solution of the three-dimensional Helmholtz equation. In the case when the surface is sufficiently smooth ( Lyapunov) we show that the integral operators are nevertheless bounded as operators on L-2(Gamma) and on L-2(Gamma G) boolean AND BC(Gamma) and that the operators depend continuously in norm on the wave number and on G. We further show that for mild roughness, i.e., a surface G which does not differ too much from a plane, the boundary integral equation is uniquely solvable in the space L-2(Gamma) boolean AND BC(Gamma) and the scattering problem has a unique solution which satisfies a limiting absorption principle in the case of real wave number.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the characteristics of the three-dimensional, time evolving, atmospheric boundary layer that develops beneath an idealised, dry, baroclinic weather system. The boundary-layer structure is forced by thermal advection associated with the weather system. Large positive heat fluxes behind the cold front drive a vigorous convective boundary layer, whereas moderate negative heat fluxes in the warm sector between the cold and warm fronts generate shallow, stably stratified or neutral boundary layers. The forcing of the boundary-layer structure is quantified by forming an Eulerian mass budget integrated over the depth of the boundary layer. The mass budget indicates that tropospheric air is entrained into the boundary layer both in the vicinity of the high-pressure centre, and behind the cold front. It is then transported horizontally within the boundary layer and converges towards the cyclone's warm sector, whence it is ventilated out into the troposphere. This cycling of air is likely to be important for the ventilation of pollution out of the boundary layer, and for the transformation of the properties of large-scale air masses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hydrothermal reactions of Ni(NO3)(2).6H(2)O, disodium fumarate (fum) and 1,2-bis(4-pyridyl)ethane (bpe)/1,3-bis(4-pyridyl) propane (bpp) in aqueous-methanol medium yield one 3-D and one 2-D metal-organic hybrid material, [Ni(fum)(bpe)] (1) and [Ni(fum)(bpp)(H2O)] (2), respectively. Complex 1 possesses a novel unprecedented structure, the first example of an "unusual mode" of a five-fold distorted interpenetrated network with metal-ligand linkages where the four six-membered windows in each adamantane-type cage are different. The structural characterization of complex 2 evidences a buckled sheet where nickel ions are in a distorted octahedral geometry, with two carboxylic groups, one acting as a bis-chelate, the other as a bis-monodentate ligand. The metal ion completes the coordination sphere through one water molecule and two bpp nitrogens in cis position. Variable-temperature magnetic measurements of complexes 1 and 2 reveal the existence of very weak antiferromagnetic intramolecular interactions and/or the presence of single-ion zero field splitting (D) of isolated Ni-II ions in both the compounds. Experimentally, both the J parameters are close, comparable and very small. Considering zero-field splitting of Ni-II, the calculated D values are in agreement with values reported in the literature for Ni-II ions. Complex 3, [{Co(phen)}(2)(fum)(2)] (phen=1,10-phenanthroline) is obtained by diffusing methanolic solution of 1,10-phenanthroline on an aqueous layer of disodium fumarate and Co(NO3)(2).6H(2)O. It consists of dimeric Co-II(phen) units, doubly bridged by carboxylate groups in a distorted syn-syn fashion. These fumarate anions act as bis-chelates to form corrugated sheets. The 2D layer has a (4,4) topology, with the nodes represented by the centres of the dimers. The magnetic data were fitted ignoring the very weak coupling through the fumarate pathway and using a dimer model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atomistic molecular dynamics simulations are used to investigate the mechanism by which the antifreeze protein from the spruce budworm, Choristoneura fumiferana, binds to ice. Comparison of structural and dynamic properties of the water around the three faces of the triangular prism-shaped protein in aqueous solution reveals that at low temperature the water structure is ordered and the dynamics slowed down around the ice-binding face of the protein, with a disordering effect observed around the other two faces. These results suggest a dual role for the solvation water around the protein. The preconfigured solvation shell around the ice-binding face is involved in the initial recognition and binding of the antifreeze protein to ice by lowering the barrier for binding and consolidation of the protein:ice interaction surface. Thus, the antifreeze protein can bind to the molecularly rough ice surface by becoming actively involved in the formation of its own binding site. Also, the disruption of water structure around the rest of the protein helps prevent the adsorbed protein becoming covered by further ice growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

E-Learning is an emerging tool that uses advanced technology to provide training and development in higher education and within industry. Its rapid growth has been facilitated by the Internet and the massive opportunities in global education. The aim of this study is to consider how effective and efficient e-learning is when integrated with traditional learning in a blended learning environment. The study will provide a comparison between purist ELearning and Blended learning environment. The paper will also provide directions for the blended learning environment which can be used by all the three main stakeholder student, tutors and institution to make strategic decision about the learning and teaching initiatives. The paper concludes that blended learning approaches offer the most flexible and scalable route to E-Learning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we develop an asymptotic scheme to approximate the trapped mode solutions to the time harmonic wave equation in a three-dimensional waveguide with a smooth but otherwise arbitrarily shaped cross section and a single, slowly varying `bulge', symmetric in the longitudinal direction. Extending the work in Biggs (2012), we first employ a WKBJ-type ansatz to identify the possible quasi-mode solutions which propagate only in the thicker region, and hence find a finite cut-on region of oscillatory behaviour and asymptotic decay elsewhere. The WKBJ expansions are used to identify a turning point between the cut-on and cut-on regions. We note that the expansions are nonuniform in an interior layer centred on this point, and we use the method of matched asymptotic expansions to connect the cut-on and cut-on regions within this layer. The behaviour of the expansions within the interior layer then motivates the construction of a uniformly valid asymptotic expansion. Finally, we use this expansion and the symmetry of the waveguide around the longitudinal centre, x = 0, to extract trapped mode wavenumbers, which are compared with those found using a numerical scheme and seen to be extremely accurate, even to relatively large values of the small parameter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method of estimating dissipation rates from a vertically pointing Doppler lidar with high temporal and spatial resolution has been evaluated by comparison with independent measurements derived from a balloon-borne sonic anemometer. This method utilizes the variance of the mean Doppler velocity from a number of sequential samples and requires an estimate of the horizontal wind speed. The noise contribution to the variance can be estimated from the observed signal-to-noise ratio and removed where appropriate. The relative size of the noise variance to the observed variance provides a measure of the confidence in the retrieval. Comparison with in situ dissipation rates derived from the balloon-borne sonic anemometer reveal that this particular Doppler lidar is capable of retrieving dissipation rates over a range of at least three orders of magnitude. This method is most suitable for retrieval of dissipation rates within the convective well-mixed boundary layer where the scales of motion that the Doppler lidar probes remain well within the inertial subrange. Caution must be applied when estimating dissipation rates in more quiescent conditions. For the particular Doppler lidar described here, the selection of suitably short integration times will permit this method to be applicable in such situations but at the expense of accuracy in the Doppler velocity estimates. The two case studies presented here suggest that, with profiles every 4 s, reliable estimates of ϵ can be derived to within at least an order of magnitude throughout almost all of the lowest 2 km and, in the convective boundary layer, to within 50%. Increasing the integration time for individual profiles to 30 s can improve the accuracy substantially but potentially confines retrievals to within the convective boundary layer. Therefore, optimization of certain instrument parameters may be required for specific implementations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strong vertical gradients at the top of the atmospheric boundary layer affect the propagation of electromagnetic waves and can produce radar ducts. A three-dimensional, time-dependent, nonhydrostatic numerical model was used to simulate the propagation environment in the atmosphere over the Persian Gulf when aircraft observations of ducting had been made. A division of the observations into high- and low-wind cases was used as a framework for the simulations. Three sets of simulations were conducted with initial conditions of varying degrees of idealization and were compared with the observations taken in the Ship Antisubmarine Warfare Readiness/Effectiveness Measuring (SHAREM-115) program. The best results occurred with the initialization based on a sounding taken over the coast modified by the inclusion of data on low-level atmospheric conditions over the Gulf waters. The development of moist, cool, stable marine internal boundary layers (MIBL) in air flowing from land over the waters of the Gulf was simulated. The MIBLs were capped by temperature inversions and associated lapses of humidity and refractivity. The low-wind MIBL was shallower and the gradients at its top were sharper than in the high-wind case, in agreement with the observations. Because it is also forced by land–sea contrasts, a sea-breeze circulation frequently occurs in association with the MIBL. The size, location, and internal structure of the sea-breeze circulation were realistically simulated. The gradients of temperature and humidity that bound the MIBL cause perturbations in the refractivity distribution that, in turn, lead to trapping layers and ducts. The existence, location, and surface character of the ducts were well captured. Horizontal variations in duct characteristics due to the sea-breeze circulation were also evident. The simulations successfully distinguished between high- and low-wind occasions, a notable feature of the SHAREM-115 observations. The modeled magnitudes of duct depth and strength, although leaving scope for improvement, were most encouraging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The NERC UK SOLAS-funded Reactive Halogens in the Marine Boundary Layer (RHaMBLe) programme comprised three field experiments. This manuscript presents an overview of the measurements made within the two simultaneous remote experiments conducted in the tropical North Atlantic in May and June 2007. Measurements were made from two mobile and one ground-based platforms. The heavily instrumented cruise D319 on the RRS Discovery from Lisbon, Portugal to São Vicente, Cape Verde and back to Falmouth, UK was used to characterise the spatial distribution of boundary layer components likely to play a role in reactive halogen chemistry. Measurements onboard the ARSF Dornier aircraft were used to allow the observations to be interpreted in the context of their vertical distribution and to confirm the interpretation of atmospheric structure in the vicinity of the Cape Verde islands. Long-term ground-based measurements at the Cape Verde Atmospheric Observatory (CVAO) on São Vicente were supplemented by long-term measurements of reactive halogen species and characterisation of additional trace gas and aerosol species during the intensive experimental period. This paper presents a summary of the measurements made within the RHaMBLe remote experiments and discusses them in their meteorological and chemical context as determined from these three platforms and from additional meteorological analyses. Air always arrived at the CVAO from the North East with a range of air mass origins (European, Atlantic and North American continental). Trace gases were present at stable and fairly low concentrations with the exception of a slight increase in some anthropogenic components in air of North American origin, though NOx mixing ratios during this period remained below 20 pptv (note the non-IUPAC adoption in this manuscript of pptv and ppbv, equivalent to pmol mol−1 and nmol mol−1 to reflect common practice). Consistency with these air mass classifications is observed in the time series of soluble gas and aerosol composition measurements, with additional identification of periods of slightly elevated dust concentrations consistent with the trajectories passing over the African continent. The CVAO is shown to be broadly representative of the wider North Atlantic marine boundary layer; measurements of NO, O3 and black carbon from the ship are consistent with a clean Northern Hemisphere marine background. Aerosol composition measurements do not indicate elevated organic material associated with clean marine air. Closer to the African coast, black carbon and NO levels start to increase, indicating greater anthropogenic influence. Lower ozone in this region is possibly associated with the increased levels of measured halocarbons, associated with the nutrient rich waters of the Mauritanian upwelling. Bromide and chloride deficits in coarse mode aerosol at both the CVAO and on D319 and the continuous abundance of inorganic gaseous halogen species at CVAO indicate significant reactive cycling of halogens. Aircraft measurements of O3 and CO show that surface measurements are representative of the entire boundary layer in the vicinity both in diurnal variability and absolute levels. Above the inversion layer similar diurnal behaviour in O3 and CO is observed at lower mixing ratios in the air that had originated from south of Cape Verde, possibly from within the ITCZ. ECMWF calculations on two days indicate very different boundary layer depths and aircraft flights over the ship replicate this, giving confidence in the calculated boundary layer depth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The political response to the complex package of environmental problems which threaten the future of our planet has been to introduce a new agenda of environmental action based on the principles of sustainability and subsidiarity. This has been crystallised in world agreements signed at the Earth Summit in Rio. One of these, Agenda 21, calls for the governments and communities of the world to prepare action plans for their areas which can build consensus between the various stakeholder groups and feed the principles of sustainable development back into their policies and day-to-day practices. This paper explores the experience of Local Agenda 21 type processes at three levels in the South East of England: the regional, county (sub-regional) and local level. In particular it undertakes a critical appraisal of the success of these participatory and consensus-building exercises in developing an integrated and co-ordinated approach to environmental action planning. It concludes that, although much useful work has been done in raising awareness and modifying policy and practice, there are significant cultural and institutional barriers which are hindering progress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A three-point difference scheme recently proposed in Ref. 1 for the numerical solution of a class of linear, singularly perturbed, two-point boundary-value problems is investigated. The scheme is derived from a first-order approximation to the original problem with a small deviating argument. It is shown here that, in the limit, as the deviating argument tends to zero, the difference scheme converges to a one-sided approximation to the original singularly perturbed equation in conservation form. The limiting scheme is shown to be stable on any uniform grid. Therefore, no advantage arises from using the deviating argument, and the most accurate and efficient results are obtained with the deviation at its zero limit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results from an idealized three-dimensional baroclinic life-cycle model are interpreted in a potential vorticity (PV) framework to identify the physical mechanisms by which frictional processes acting in the atmospheric boundary layer modify and reduce the baroclinic development of a midlatitude storm. Considering a life cycle where the only non-conservative process acting is boundary-layer friction, the rate of change of depth-averaged PV within the boundary layer is governed by frictional generation of PV and the flux of PV into the free troposphere. Frictional generation of PV has two contributions: Ekman generation, which is directly analogous to the well-known Ekman-pumping mechanism for barotropic vortices, and baroclinic generation, which depends on the turning of the wind in the boundary layer and low-level horizontal temperature gradients. It is usually assumed, at least implicitly, that an Ekman process of negative PV generation is the mechanism whereby friction reduces the strength and growth rates of baroclinic systems. Although there is evidence for this mechanism, it is shown that baroclinic generation of PV dominates, producing positive PV anomalies downstream of the low centre, close to developing warm and cold fronts. These PV anomalies are advected by the large-scale warm conveyor belt flow upwards and polewards, fluxed into the troposphere near the warm front, and then advected westwards relative to the system. The result is a thin band of positive PV in the lower troposphere above the surface low centre. This PV is shown to be associated with a positive static stability anomaly, which Rossby edge wave theory suggests reduces the strength of the coupling between the upper- and lower-level PV anomalies, thereby reducing the rate of baroclinic development. This mechanism, which is a result of the baroclinic dynamics in the frontal regions, is in marked contrast with simple barotropic spin-down ideas. Finally we note the implications of these frictionally generated PV anomalies for cyclone forecasting.