21 resultados para The Invention of Hugo Cabret
Resumo:
The author contends that many of the conventions of Italian film studies derive from the conflicts and the critical vocabulary that shaped the Italian reception of neorealism in the first decade after the Second World War. Those conflicts, and that critical vocabulary, which lie at the foundation of what has been called the ‘institution of neorealism,’ established an irreconcilable binary: Cronaca and Narrativa. For the neorealists and their critics, Cronaca stood for the effort to record data faithfully, while Narrativa represented the effort to employ the shaping force of human invention in the representation of information. This essay’s first section analyzes the earliest reviews of Rossellini’s Roma città aperta alongside the contemporaneous literary debates over Cronaca and Narrativa. The second section reconsiders the reception of Pratolini’s Metello and Visconti’s Senso, which similarly centered upon the conflict between Cronaca and Narrativa. The third section proposes that the concepts which have often been employed to unify neorealism are destabilized by the Cronaca/Narrativa binary. In search of a solution to neorealism’s conceptual instability, this essay proposes more critical and purposeful appropriations of the movement’s problematic genealogy.
Resumo:
Once Britain had become separated from the European mainland in the seventh millennium BC, Mesolithic stone tool traditions on opposite sides of the newly formed Channel embarked upon different directions of development. Patterns of cross-Channel contact have been difficult to decipher in this material, prior to the expansion of farming (and possibly farmers) from northern France at the beginning of the fourth millennium BC. Hence the discovery of Late Mesolithic microliths of apparently Belgian affinity at the western extremity of southern Britain in the Isles of Scilly comes as something of a surprise. The find is described here in detail, along with alternative scenarios that might explain it. The article is followed by a series of comments, with a closing reply from the authors.
Resumo:
We investigate the processes responsible for the intraseasonal displacements of the eastern edge of the western Pacific warm pool (WPEE), which appear to play a role in the onset and development of El Niño events. We use 25 years of output from an ocean general circulation model experiment that is able to accurately capture the observed displacements of the WPEE, sea level anomalies, and upper ocean zonal currents at intraseasonal time scales in the western and central Pacific Ocean. Our results confirm that WPEE displacements driven by westerly wind events (WWEs) are largely controlled by zonal advection. This paper has also two novel findings: first, the zonal current anomalies responsible for the WPEE advection are driven primarily by local wind stress anomalies and not by intraseasonal wind-forced Kelvin waves as has been shown in most previous studies. Second, we find that intraseasonal WPEE fluctuations that are not related to WWEs are generally caused by intraseasonal variations in net heat flux, in contrast to interannual WPEE displacements that are largely driven by zonal advection. This study hence raises an interesting question: can surface heat flux-induced zonal WPEE motions contribute to El Niño–Southern Oscillation evolution, as WWEs have been shown to be able to do?
Resumo:
A recent field campaign in southwest England used numerical modeling integrated with aircraft and radar observations to investigate the dynamic and microphysical interactions that can result in heavy convective precipitation. The COnvective Precipitation Experiment (COPE) was a joint UK-US field campaign held during the summer of 2013 in the southwest peninsula of England, designed to study convective clouds that produce heavy rain leading to flash floods. The clouds form along convergence lines that develop regularly due to the topography. Major flash floods have occurred in the past, most famously at Boscastle in 2004. It has been suggested that much of the rain was produced by warm rain processes, similar to some flash floods that have occurred in the US. The overarching goal of COPE is to improve quantitative convective precipitation forecasting by understanding the interactions of the cloud microphysics and dynamics and thereby to improve NWP model skill for forecasts of flash floods. Two research aircraft, the University of Wyoming King Air and the UK BAe 146, obtained detailed in situ and remote sensing measurements in, around, and below storms on several days. A new fast-scanning X-band dual-polarization Doppler radar made 360-deg volume scans over 10 elevation angles approximately every 5 minutes, and was augmented by two UK Met Office C-band radars and the Chilbolton S-band radar. Detailed aerosol measurements were made on the aircraft and on the ground. This paper: (i) provides an overview of the COPE field campaign and the resulting dataset; (ii) presents examples of heavy convective rainfall in clouds containing ice and also in relatively shallow clouds through the warm rain process alone; and (iii) explains how COPE data will be used to improve high-resolution NWP models for operational use.