19 resultados para Tank trucks
Resumo:
We present a methodology that allows a sea ice rheology, suitable for use in a General Circulation Model (GCM), to be determined from laboratory and tank experiments on sea ice when combined with a kinematic model of deformation. The laboratory experiments determine a material rheology for sea ice, and would investigate a nonlinear friction law of the form τ ∝ σ n⅔, instead of the more familiar Amonton's law, τ = μσn (τ is the shear stress, μ is the coefficient of friction and σ n is the normal stress). The modelling approach considers a representative region R containing ice floes (or floe aggregates), separated by flaws. The deformation of R is imposed and the motion of the floes determined using a kinematic model, which will be motivated from SAR observations. Deformation of the flaws is inferred from the floe motion and stress determined from the material rheology. The stress over R is then determined from the area-weighted contribution from flaws and floes
Resumo:
This paper reports the results of a 2-year study of water quality in the River Enborne, a rural river in lowland England. Concentrations of nitrogen and phosphorus species and other chemical determinands were monitored both at high-frequency (hourly), using automated in situ instrumentation, and by manual weekly sampling and laboratory analysis. The catchment land use is largely agricultural, with a population density of 123 persons km−2. The river water is largely derived from calcareous groundwater, and there are high nitrogen and phosphorus concentrations. Agricultural fertiliser is the dominant source of annual loads of both nitrogen and phosphorus. However, the data show that sewage effluent discharges have a disproportionate effect on the river nitrogen and phosphorus dynamics. At least 38% of the catchment population use septic tank systems, but the effects are hard to quantify as only 6% are officially registered, and the characteristics of the others are unknown. Only 4% of the phosphorus input and 9% of the nitrogen input is exported from the catchment by the river, highlighting the importance of catchment process understanding in predicting nutrient concentrations. High-frequency monitoring will be a key to developing this vital process understanding.
Resumo:
Threat detection is a challenging problem, because threats appear in many variations and differences to normal behaviour can be very subtle. In this paper, we consider threats on a parking lot, where theft of a truck’s cargo occurs. The threats range from explicit, e.g. a person attacking the truck driver, to implicit, e.g. somebody loitering and then fiddling with the exterior of the truck in order to open it. Our goal is a system that is able to recognize a threat instantaneously as they develop. Typical observables of the threats are a person’s activity, presence in a particular zone and the trajectory. The novelty of this paper is an encoding of these threat observables in a semantic, intermediate-level representation, based on low-level visual features that have no intrinsic semantic meaning themselves. The aim of this representation was to bridge the semantic gap between the low-level tracks and motion and the higher-level notion of threats. In our experiments, we demonstrate that our semantic representation is more descriptive for threat detection than directly using low-level features. We find that a person’s activities are the most important elements of this semantic representation, followed by the person’s trajectory. The proposed threat detection system is very accurate: 96.6 % of the tracks are correctly interpreted, when considering the temporal context.
Resumo:
Noncompetitive bids have recently become a major concern in both public and private sector construction contract auctions. Consequently, several models have been developed to help identify bidders potentially involved in collusive practices. However, most of these models require complex calculations and extensive information that is difficult to obtain. The aim of this paper is to utilize recent developments for detecting abnormal bids in capped auctions (auctions with an upper bid limit set by the auctioner) and extend them to the more conventional uncapped auctions (where no such limits are set). To accomplish this, a new method is developed for estimating the values of bid distribution supports by using the solution to what has become known as the German Tank problem. The model is then demonstrated and tested on a sample of real construction bid data, and shown to detect cover bids with high accuracy. This paper contributes to an improved understanding of abnormal bid behavior as an aid to detecting and monitoring potential collusive bid practices.