23 resultados para TIGHT GAS. Low permeability. Hydraulic fracturing. Reservoir modeling. Numerical simulation
Comparing the thermal performance of horizontal slinky-loop and vertical slinky-loop heat exchangers
Resumo:
The heat pump market in the UK has grown rapidly over the last few years. Performance analyses of vertical ground-loop heat exchanger configurations have been widely carried out using both numerical modelling and experiments. However, research findings and design recommendations on horizontal slinky-loop and vertical slinky-loop heat exchangers are far fewer compared with those for vertical ground-loop heat exchanger configurations, especially where the long-term operation of the systems is concerned. The paper presents the results obtained from a numerical simulation for the horizontal slinky-loop and vertical slinky-loop heat exchangers of a ground-source heat pump system. A three-dimensional numerical heat transfer model was developed to study the thermal performance of various heat exchanger configurations. The influence of the loop pitch (loop spacing) and the depth of a vertical slinky-loop installation were investigated and the thermal performance and excavation work required for the horizontal and vertical slinky-loop heat exchangers were compared. The influence of the installation depth for vertical slinky-loop configurations was also investigated. The results of this study show that the influence of the installation depth of the vertical slinky-loop heat exchanger on the thermal performance of the system is small. The maximum difference in the thermal performance between the vertical and horizontal slinky-loop heat exchangers with the same loop diameter and loop pitch is less than 5%.
Resumo:
The low wave number range of decaying turbulence governed by the Charney-Hasegawa-Mima (CHM) equation is examined theoretically and by direct numerical simulation. Here, the low wave number range is defined as values of the wave number k below the wave number kE corresponding to the peak of the energy spectrum, or alternatively the centroid wave number of the energy spectrum. The energy spectrum in the low wave number range in the infrared regime (k →0) is theoretically derived to be E(k) ∼k5, using a quasinormal Markovianized model of the CHM equation. This result is verified by direct numerical simulation of the CHM equation. The wave number triads (k,p,q) responsible for the formation of the low wave number spectrum are also examined. It is found that the energy flux Π(k) for k< kE can be entirely expressed by Π(-)(k), which is the total net input of energy to wave numbers
Resumo:
The idea of buildings in harmony with nature can be traced back to ancient times. The increasing concerns on sustainability oriented buildings have added new challenges in building architectural design and called for new design responses. Sustainable design integrates and balances the human geometries and the natural ones. As the language of nature, it is, therefore, natural to assume that fractal geometry could play a role in developing new forms of aesthetics and sustainable architectural design. This paper gives a brief description of fractal geometry theory and presents its current status and recent developments through illustrative review of some fractal case studies in architecture design, which provides a bridge between fractal geometry and architecture design.
Resumo:
This paper describes the measurements of the acoustic and petrophysical properties of two suites of low-shale sandstone samples from North Sea hydrocarbon reservoirs, under simulated reservoir conditions. The acoustic velocities and quality factors of the samples, saturated with different pore fluids (brine, dead oil and kerosene), were measured at a frequency of about 0.8 MHz and over a range of pressures from 5 MPa to 40 MPa. The compressional-wave velocity is strongly correlated with the shear-wave velocity in this suite of rocks. The ratio V-P/V-S varies significantly with change of both pore-fluid type and differential pressure, confirming the usefulness of this parameter for seismic monitoring of producing reservoirs. The results of quality factor measurements were compared with predictions from Biot-flow and squirt-flow loss mechanisms. The results suggested that the dominating loss in these samples is due to squirt-flow of fluid between the pores of various geometries. The contribution of the Biot-flow loss mechanism to the total loss is negligible. The compressional-wave quality factor was shown to be inversely correlated with rock permeability, suggesting the possibility of using attenuation as a permeability indicator tool in low-shale, high-porosity sandstone reservoirs.
Resumo:
This study presents a numerical method to derive the Darcy- Weisbach friction coefficient for overland flow under partial inundation of surface roughness. To better account for the variable influence of roughness with varying levels of emergence, we model the flow over a network which evolves as the free surface rises. This network is constructed using a height numerical map, based on surface roughness data, and a discrete geometry skeletonization algorithm. By applying a hydraulic model to the flows through this network, local heads, velocities, and Froude and Reynolds numbers over the surface can be estimated. These quantities enable us to analyze the flow and ultimately to derive a bulk friction factor for flow over the entire surface which takes into account local variations in flow quantities. Results demonstrate that although the flow is laminar, head losses are chiefly inertial because of local flow disturbances. The results also emphasize that for conditions of partial inundation, flow resistance varies nonmonotonically but does generally increase with progressive roughness inundation.
Resumo:
Time-resolved kinetic studies of the reaction of silylene, SiH2, with H2O and with D2O have been carried out in the gas phase at 296 and at 339 K, using laser flash photolysis to generate and monitor SiH2. The reaction was studied over the pressure range 10-200 Torr with SF6 as bath gas. The second-order rate constants obtained were pressure dependent, indicating that the reaction is a third-body assisted association process. Rate constants at 339 K were about half those at 296 K. Isotope effects, k(H)/k(D), were small averaging 1.076 0.080, suggesting no involvement of H- (or D-) atom transfer in the rate determining step. RRKM modeling was undertaken based on a transition state appropriate to formation of the expected zwitterionic donoracceptor complex, H2Si...OH2. Because the reaction is close to the low pressure (third order) region, it is difficult to be definitive about the activated complex structure. Various structures were tried, both with and without the incorporation of rotational modes, leading to values for the high-pressure limiting (i.e., true secondorder) rate constant in the range 9.5 x 10(-11) to 5 x 10(-10) cm(3) molecule' s(-1). The RRKM modeling and mechanistic interpretation is supported by ab initio quantum calculations carried out at the G2 and G3 levels. The results are compared and contrasted with the previous studies.
Resumo:
Accurate estimates of how soil water stress affects plant transpiration are crucial for reliable land surface model (LSM) predictions. Current LSMs generally use a water stress factor, β, dependent on soil moisture content, θ, that ranges linearly between β = 1 for unstressed vegetation and β = 0 when wilting point is reached. This paper explores the feasibility of replacing the current approach with equations that use soil water potential as their independent variable, or with a set of equations that involve hydraulic and chemical signaling, thereby ensuring feedbacks between the entire soil–root–xylem–leaf system. A comparison with the original linear θ-based water stress parameterization, and with its improved curvi-linear version, was conducted. Assessment of model suitability was focused on their ability to simulate the correct (as derived from experimental data) curve shape of relative transpiration versus fraction of transpirable soil water. We used model sensitivity analyses under progressive soil drying conditions, employing two commonly used approaches to calculate water retention and hydraulic conductivity curves. Furthermore, for each of these hydraulic parameterizations we used two different parameter sets, for 3 soil texture types; a total of 12 soil hydraulic permutations. Results showed that the resulting transpiration reduction functions (TRFs) varied considerably among the models. The fact that soil hydraulic conductivity played a major role in the model that involved hydraulic and chemical signaling led to unrealistic values of β, and hence TRF, for many soil hydraulic parameter sets. However, this model is much better equipped to simulate the behavior of different plant species. Based on these findings, we only recommend implementation of this approach into LSMs if great care with choice of soil hydraulic parameters is taken
Resumo:
Cities globally are in the midst of taking action to reduce greenhouse gas (GHG) emissions. After the vital step of emissions quantification, strategies must be developed to detail how emissions reductions targets will be achieved. The Pathways to Urban Reductions in Greenhouse Gas Emissions (PURGE) model allows the estimation of emissions from four pertinent urban sectors: electricity generation, buildings, private transportation, and waste. Additionally, the carbon storage from urban and regional forests is modeled. An emissions scenario is examined for a case study of the greater Toronto, Ontario, Canada, area using data on current technology stocks and government projections for stock change. The scenario presented suggests that even with some aggressive targets for technological adoption (especially in the transportation sector), it will be difficult to achieve the less ambitious 2050 emissions reduction goals of the Intergovernmental Panel on Climate Change. This is largely attributable to the long life of the building stock and limitations of current retrofit practices. Additionally, demand reduction (through transportation mode shifting and building occupant behavior) will be an important component of future emissions cuts.