33 resultados para TERMINAL ALKYNES
Resumo:
The outer membrane usher protein Caf1A of the plague pathogen Yersinia pestis is responsible for the assembly of a major surface antigen, the F1 capsule. The F1 capsule is mainly formed by thin linear polymers of Caf1 (capsular antigen fraction 1) protein subunits. The Caf1A usher promotes polymerization of subunits and secretion of growing polymers to the cell surface. The usher monomer (811 aa, 90.5 kDa) consists of a large transmembrane β-barrel that forms a secretion channel and three soluble domains. The periplasmic N-terminal domain binds chaperone-subunit complexes supplying new subunits for the growing fiber. The middle domain, which is structurally similar to Caf1 and other fimbrial subunits, serves as a plug that regulates the permeability of the usher. Here we describe the identification, characterization, and crystal structure of the Caf1A usher C-terminal domain (Caf1A(C)). Caf1A(C) is shown to be a periplasmic domain with a seven-stranded β-barrel fold. Analysis of C-terminal truncation mutants of Caf1A demonstrated that the presence of Caf1A(C) is crucial for the function of the usher in vivo, but that it is not required for the initial binding of chaperone-subunit complexes to the usher. Two clusters of conserved hydrophobic residues on the surface of Caf1A(C) were found to be essential for the efficient assembly of surface polymers. These clusters are conserved between the FGL family and the FGS family of chaperone-usher systems.
Resumo:
The molecular mechanisms underlying the initiation and control of the release of cytochrome c during mitochondrion-dependent apoptosis are thought to involve the phosphorylation of mitochondrial Bcl-2 and Bcl-x(L). Although the c-Jun N-terminal kinase (JNK) has been proposed to mediate the phosphorylation of Bcl-2/Bcl-x(L) the mechanisms linking the modification of these proteins and the release of cytochrome c remain to be elucidated. This study was aimed at establishing interdependency between JNK signalling and mitochondrial apoptosis. Using an experimental model consisting of isolated, bioenergetically competent rat brain mitochondria, these studies show that (i) JNK catalysed the phosphorylation of Bcl-2 and Bcl-x(L) as well as other mitochondrial proteins, as shown by two-dimensional isoelectric focusing/SDS/PAGE; (ii) JNK-induced cytochrome c release, in a process independent of the permeability transition of the inner mitochondrial membrane (imPT) and insensitive to cyclosporin A; (iii) JNK mediated a partial collapse of the mitochondrial inner-membrane potential (Deltapsim) in an imPT- and cyclosporin A-independent manner; and (iv) JNK was unable to induce imPT/swelling and did not act as a co-inducer, but as an inhibitor of Ca-induced imPT. The results are discussed with regard to the functional link between the Deltapsim and factors influencing the permeability transition of the inner and outer mitochondrial membranes. Taken together, JNK-dependent phosphorylation of mitochondrial proteins including, but not limited to, Bcl-2/Bcl-x(L) may represent a potential of the modulation of mitochondrial function during apoptosis.
Resumo:
The argument for the inclusion of real estate in the mixed-asset portfolio has concentrated on examining its effect in reducing the portfolio risk - the time series standard deviation (TSSD), mainly using ex-post time series data. However, the past as such is not really relevant to the long-term institutional investors, such as the insurance companies and pension funds, who are more concerned the terminal wealth (TW) of their investments and the variability of this wealth, the terminal wealth standard deviation (TWSD), since it is from the TW of their investment portfolio that policyholders and pensioners will derive their benefits. These kinds of investors with particular holding period requirements will be less concerned about the within period volatility of their portfolios and more by the possibility that their portfolio returns will fail to finance their liabilities. This variability in TW will be closely linked to the risk of shortfall in the quantity of assets needed to match the institution’s liabilities. The question remains therefore can real estate enhance the TW of the mixed-asset portfolio and/or reduce the variability of the TW. This paper uses annual data from the United Kingdom (UK) for the period 1972-2001 to test whether real estate is an asset class that not only reduces ex-post portfolio risk but also enhances portfolio TW and/or reduces the variability of TW.
Resumo:
A series of hexadentate ligands, H2Lm (m = 1−4), [1H-pyrrol-2-ylmethylene]{2-[2-(2-{[1H-pyrrol-2-ylmethylene]amino}phenoxy)ethoxy]phenyl}amine (H2L1), [1H-pyrrol-2-ylmethylene]{2-[4-(2-{[1H-pyrrol-2-ylmethylene]amino}phenoxy)butoxy]phenyl}amine (H2L2), [1H-pyrrol-2-ylmethylene][2-({2-[(2-{[1H-pyrrol-2-ylmethylene]amino}phenyl)thio]ethyl}thio)phenyl]amine (H2L3) and [1H-pyrrol-2-ylmethylene][2-({4-[(2-{[1H-pyrrol-2-lmethylene]amino}phenyl)thio]butyl}thio) phenyl]amine (H2L4) were prepared by condensation reaction of pyrrol-2-carboxaldehyde with {2-[2-(2-aminophenoxy)ethoxy]phenyl}amine, {2-[4-(2-aminophenoxy)butoxy]phenyl}amine, [2-({2-[(2-aminophenyl)thio]ethyl}thio)phenyl]amine and [2-({4-[(2-aminophenyl)thio]butyl}thio)phenyl]amine respectively. Reaction of these ligands with nickel(II) and copper(II) acetate gave complexes of the form MLm (m = 1−4), and the synthesized ligands and their complexes have been characterized by a variety of physico-chemical techniques. The solid and solution states investigations show that the complexes are neutral. The molecular structures of NiL3 and CuL2, which have been determined by single crystal X-ray diffraction, indicate that the NiL3 complex has a distorted octahedral coordination environment around the metal while the CuL2 complex has a seesaw coordination geometry. DFT calculations were used to analyse the electronic structure and simulation of the electronic absorption spectrum of the CuL2 complex using TDDFT gives results that are consistent with the measured spectroscopic behavior of the complex. Cyclic voltammetry indicates that all copper complexes are electrochemically inactive but the nickel complexes with softer thioethers are more easily oxidized than their oxygen analogs.
Resumo:
In cattle, the lymphoid rich regions of the rectal-anal mucosa at the terminal rectum are the preferred site for Escherichia coli O157:H7 colonisation. All cattle infected by rectal swab administration demonstrate long-term E. coli O157:H7 colonisation, whereas orally challenged cattle do not demonstrate long-term E. coli O157:H7 colonisation in all animals. Oral, but not rectal challenge of sheep with E. coli O157:H7 has been reported, but an exact site for colonisation in sheep is unknown. To determine if E. coli O157:H7 can effectively colonise the ovine terminal rectum, in vitro organ culture (IVOC) was initiated. Albeit sparsely, large, densely packed E. coli O157:H7 micro-colonies were observed on the mucosa of ovine and control bovine terminal rectum explants. After necropsy of orally inoculated lambs, bacterial enumeration of the proximal and distal gastrointestinal tract did suggest a preference for E. coli O157:H7 colonisation at the ovine terminal rectum, albeit for both lymphoid rich and non-lymphoid sites. As reported for cattle, rectal inoculation studies were then conducted to determine if all lambs would demonstrate persistent colonisation at the terminal rectum. After necropsy of E. coli O157:H7 rectally inoculated lambs, most animals were not colonised at gastrointestinal sites proximal to the rectum, however, large densely packed micro-colonies of E. coli O157:H7 were observed on the ovine terminal rectum mucosa. Nevertheless, at the end point of the study (day 14), only one lamb had E. coli O157:H7 micro-colonies associated with the terminal rectum mucosa. A comparison of E. coli O157:H7 shedding yielded a similar pattern of persistence between rectally and orally inoculated lambs. The inability of E. coli O157:H7 to effectively colonise the terminal rectum mucosa of all rectally inoculated sheep in the long term, suggests that E. coli O157:H7 may colonise this site, but less effectively than reported previously for cattle.
Resumo:
Photoperiodic flowering has been extensively studied in the annual short-day and long-day plants rice and Arabidopsis while less is known about the control of flowering in perennials. In the perennial wild strawberry, Fragaria vesca L. (Rosaceae), short-day and perpetual flowering long-day accessions occur. Genetic analyses showed that differences in their flowering responses are caused by a single gene, the SEASONAL FLOWERING LOCUS which may encode the F. vesca homolog of TERMINAL FLOWER1 (FvTFL1). We show through high-resolution mapping and transgenic approaches that FvTFL1 is the basis of this change in flowering behavior and demonstrate that FvTFL1 acts as a photoperiodically regulated repressor. In short-day F. vesca, long photoperiods activate FvTFL1 mRNA expression and short days suppress it, promoting flower induction. These seasonal cycles in FvTFL1 mRNA level confer seasonal cycling of vegetative and reproductive development. Mutations in FvTFL1 prevent LD suppression of flowering, and the early flowering that then occurs under LD is dependent on the F. vesca homolog of FLOWERING LOCUS T. This photoperiodic response mechanism differs from those described in model annual plants. We suggest that this mechanism controls flowering within the perennial growth cycle in F. vesca, and demonstrate that a change in a single gene reverses the photoperiodic requirements for flowering.
Resumo:
Terminal: A Miracle Play with Popular Music from the End of the World is a film and live performance project exploring the politics of post-apocalyptic fiction. A theatrical staging of a morality play for end times and future folk music, it recasts eschatology, as a foundational myth for a future society. Post-apocalyptic writing and cinema are grounded in an ethos of survivalism. Invoking Rousseau’s state of nature, or time before government, these fictions propose violent scenarios in which nuclear holocaust, environmental catastrophe and other disasters generate an individualistic politics of pure pragmatism, negating the possibility of democratic deliberation. Terminal narrates this familiar scenario, but at the same time questions its validity. The film, shot on black and white VHS at Kurt Schwitters’ Merzbarn in Cumbria, dramatises a series of conversations between future-historical archetypes about the needs and pressures of the situation in which they find themselves at the end of the world. The performers then gather to play worshipful songs about acid rain, radiation sickness and eating the dog, using a mix of conventional, obscure and makeshift instruments In the tradition of books such as Russell Hoban’s Riddley Walker and Arthur M. Miller Jr.’s A Canticle for Liebowitz, Terminal imagines artistic expression and new folk traditions for a world to come after the apocalypse. If, as Slavoj Žižek would have it, it is easier to imagine the end of the world than to think of the end of capitalism, the project juxtaposes these two endpoints to test out how alternative scenarios might emerge from the collaborative practice of making theatre and music against a setting of social collapse.
Resumo:
Duchenne muscular dystrophy is a severe X-linked inherited muscle wasting disorder caused by mutations in the dystrophin gene. Adeno-associated virus (AAV) vectors have been extensively used to deliver genes efficiently for dystrophin expression in skeletal muscles. To overcome limited packaging capacity of AAV vectors (<5 kb), truncated recombinant microdystrophin genes with deletions of most of rod and carboxyl-terminal (CT) domains of dystrophin have been developed. We have previously shown the efficiency of mRNA sequence–optimized microdystrophin (ΔR4-23/ΔCT, called MD1) with deletion of spectrin-like repeat domain 4 to 23 and CT domain in ameliorating the pathology of dystrophic mdx mice. However, the CT domain of dystrophin is thought to recruit part of the dystrophin-associated protein complex, which acts as a mediator of signalling between extracellular matrix and cytoskeleton in muscle fibers. In this study, we extended the ΔR4-23/ΔCT microdystrophin by incorporating helix 1 of the coiled-coil motif in the CT domain of dystrophin (MD2), which contains the α1-syntrophin and α-dystrobrevin binding sites. Intramuscular injection of AAV2/9 expressing CT domain–extended microdystrophin showed efficient dystrophin expression in tibialis anterior muscles of mdx mice. The presence of the CT domain of dystrophin in MD2 increased the recruitment of α1-syntrophin and α-dystrobrevin at the sarcolemma and significantly improved the muscle resistance to lengthening contraction–induced muscle damage in the mdx mice compared with MD1. These results suggest that the incorporation of helix 1 of the coiled-coil motif in the CT domain of dystrophin to the microdystrophins will substantially improve their efficiency in restoring muscle function in patients with Duchenne muscular dystrophy.
Resumo:
Multi-proxy analyses from floodplain deposits in the Colne Valley, southern England, have provided a palaeoenvironmental context for the immediately adjacent Terminal Upper Palaeolithic and Early Mesolithic site of Three Ways Wharf. These deposits show the transition from an open cool environment to fully developed heterogeneous floodplain vegetation during the Early Mesolithic. Several distinct phases of burning are shown to have occurred that are chronologically contemporary with the local archaeological record. The floodplain itself is shown to have supported a number of rare Urwaldrelikt insect species implying human manipulation of the floodplain at this time must have been limited or episodic. By the Late Mesolithic a reed-sedge swamp had developed across much of the floodplain, within which repeated burning of the in situ vegetation took place. This indicates deliberate land management practices utilising fire, comparable with findings from other floodplain sequences in southern Britain. With similar sedimentary sequences known to exist across the Colne Valley, often closely associated with contemporary archaeology, the potential for placing the archaeological record within a spatially explicit palaeoenvironmental context is great.
Resumo:
We have used a novel knockin mouse to investigate the effect of disruption of phosphotyrosine binding of the N-terminal SH2 domain of Syk on platelet activation by GPVI, CLEC-2, and integrin αIIbβ3. The Syk(R41Afl/fl) mouse was crossed to a PF4-Cre(+) mouse to induce expression of the Syk mutant in the megakaryocyte/platelet lineage. Syk(R41Afl/fl;PF4-Cre) mice are born at approximately 50% of the expected frequency and have a similar phenotype to Syk(fl/fl;PF4-Cre) mice, including blood-lymphatic mixing and chyloascites. Anastomosis of the venous and lymphatic vasculatures can be seen in the mesenteric circulation accounting for rapid and continuous mixing of the 2 vasculatures. Platelet activation by CLEC-2 and GPVI is abolished in Syk(R41Afl/fl;PF4-Cre) platelets. Syk phosphorylation on Tyr519/20 is blocked in CLEC-2-stimulated platelets, suggesting a model in which binding of Syk via its N-terminal SH2 domain regulates autophosphorylation. In contrast, outside-in signaling by integrin αIIbβ3 is not altered, but it is inhibited in the presence of inhibitors of Src and Syk tyrosine kinases. These results demonstrate that αIIbβ3 regulates Syk through an ITAM-independent pathway in mice and provide novel insight into the course of events underlying Syk activation and hemITAM phosphorylation by CLEC-2.
Resumo:
"Stress-regulated" mitogen-activated protein kinases (SR-MAPKs) comprise the stress-activated protein kinases (SAPKs)/c-Jun N-terminal kinases (JNKs) and the p38-MAPKs. In the perfused heart, ischemia/reperfusion activates SR-MAPKs. Although the agent(s) directly responsible is unclear, reactive oxygen species are generated during ischemia/reperfusion. We have assessed the ability of oxidative stress (as exemplified by H2O2) to activate SR-MAPKs in the perfused heart and compared it with the effect of ischemia/reperfusion. H2O2 activated both SAPKs/JNKs and p38-MAPK. Maximal activation by H2O2 in both cases was observed at 0.5 mM. Whereas activation of p38-MAPK by H2O2 was comparable to that of ischemia and ischemia/reperfusion, activation of the SAPKs/JNKs was less than that of ischemia/reperfusion. As with ischemia/reperfusion, there was minimal activation of the ERK MAPK subfamily by H2O2. MAPK-activated protein kinase 2 (MAPKAPK2), a downstream substrate of p38-MAPKs, was activated by H2O2 to a similar extent as with ischemia or ischemia/reperfusion. In all instances, activation of MAPKAPK2 in perfused hearts was inhibited by SB203580, an inhibitor of p38-MAPKs. Perfusion of hearts at high aortic pressure (20 kilopascals) also activated the SR-MAPKs and MAPKAPK2. Free radical trapping agents (dimethyl sulfoxide and N-t-butyl-alpha-phenyl nitrone) inhibited the activation of SR-MAPKs and MAPKAPK2 by ischemia/reperfusion. These data are consistent with a role for reactive oxygen species in the activation of SR-MAPKs during ischemia/reperfusion.
Resumo:
SB203580 is a recognised inhibitor of p38-MAPKs. Here, we investigated the effects of SB203580 on cardiac SAPKs/JNKs. The IC50 for inhibition of p38-MAPK stimulation of MAPKAPK2 was approximately 0.07 microM, whereas that for total SAPK/JNK activity was 3-10 microM. SB203580 did not inhibit immunoprecipitated JNK1 isoforms. Three peaks of SAPK/JNK activity were separated by anion exchange chromatography, eluting in the isocratic wash (44 kDa), and at 0.08 M (46 and 52 kDa) and 0.15 M NaCl (54 kDa). SB203580 (10 microM) completely inhibited the 0.15 M NaCl activity and partially inhibited the 0.08 M NaCl activity. Since JNK1 antibodies immunoprecipitate the 46 kDa activity, this indicates that SB203580 selectively inhibits 52 and 54 kDa SAPKs/JNKs.