31 resultados para Surface characteristics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrophobic chemicals are known to associate with sediment particles including those from both suspended particulate matter and bottom deposits. The complex and variable composition of natural particles makes it very difficult therefore, to predict the bioavailability of sediment-bound contaminants. To overcome these problems we have previously devised a test system using artificial particles, with or without humic acids, for use as an experimental model of natural sediments. In the present work we have applied this experimental technique to investigate the bioavailability and bioaccumulation of pyrene by the freshwater fingernail clam Sphaerium corneum. The uptake and accumulation of pyrene in clams exposed to the chemical in the presence of a sample of natural sediment was also investigated. According to the results obtained, particle surface properties and organic matter content are the key factors for assessing the bioavailability and bioaccumulation of pyrene by clams. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coadsorption of water and preadsorbed oxygen on Ru{0001) was studied by synchrotron-based high-resolution x-ray photoelectron spectroscopy. A dramatic change was observed in the interaction of water with oxygen between low and high oxygen precoverages. Low oxygen coverages below 0.18 ML induce partial dissociation, which leads to an adsorbed layer of H2O and OH. Around half the oxygen atoms take part in this reaction. All OH recombines upon heating to 200 K and desorbs together with H2O. Oxygen coverages between 0.20 and 0.50 ML inhibit dissociation, instead a highly stable intact water species is observed, which desorbs at 220 K. This species is significantly more stable than intact water on the clean surface. The stabilization is most likely due to the formation of hydrogen bonds with neighboring oxygen atoms. For intermediate oxygen coverages around 0.18 ML, the dissociation behavior depends on the preparation conditions, which points toward possible mechanisms and pathways for partial dissociation of water on Ru{0001}.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have used synchrotron-based high-resolution X-ray photoelectron spectroscopy in combination with ab initio density functional theory calculations to investigate the characteristics of water and CO adsorption on the bimetallic Cu/Pt{110}-(2 x 1) surface at a Cu coverage near 0.5 ML. Cu fills the troughs of the reconstructed clean surface forming nanowires, which are stable up to 830 K. Their presence dramatically influences the adsorption of water and CO. Water adsorption changes from intact to partially dissociated while the desorption temperature of CO on this surface increases by up to 27 K with respect to the clean Pt{110} surface. Ab initio calculations and experimental valence band spectra reveal that the Cu 3d-band is narrowed and shifted upward with respect to bulk Cu surfaces. This and electron donation to surface Pt atoms cause the increase in the bond strength between CO and the Pt surface atoms. The pathway for water dissociation occurs via Cu surface atoms. The heat of adsorption of water bonding to Cu surface atoms was calculated to be 0.82 eV, which is significantly higher than on the clean Pt{110} surface; the activation energy for partial dissociation is 0.53 eV (not corrected for zero point energy).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose - This paper aims to address some of the needs of present and upcoming rover designs, and introduces novel concepts incorporated in a planetary surface exploration rover design that is currently under development. Design/methodology/approach - The Multitasking Rover (MTR) is a highly re-configurable system that aims to demonstrate functionality that will cover many of the current and future needs such as rough-terrain mobility, modularity and upgradeability. It comprises a surface mobility platform which is highly re-configurable, which offers centre of mass re-allocation and rough terrain stability, and also a set of science/tool packs - individual subsystems encapsulated in packs which the rover picks up, transports and deploys. Findings - Early testing of the suspension system suggests exceptional performance characteristics. Originality/value - Principles employed in the design of the MTR can be used in future rover systems to reduce associated mission costs and at the same time provide multiples the functionality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between tropical convection, surface fluxes, and sea surface temperature (SST) on intraseasonal timescales has been examined as part of an investigation of the possibility that the intraseasonal oscillation is a coupled atmosphere–ocean phenomenon. The unique feature of this study is that 15 yr of data and the whole region from the Indian Ocean to the Pacific Ocean have been analyzed using lag-correlation analysis and compositing techniques. A coherent relationship between convection, surface fluxes, and SST has been found on intraseasonal timescales in the Indian Ocean, Maritime Continent, and west Pacific regions of the Tropics. Prior to the maximum in convection, there are positive shortwave and latent heat flux anomalies into the surface, followed by warm SST anomalies about 10 days before the convective maximum. Coincident with the convective maximum, there is a minimum in the shortwave flux, followed by a cooling due to increased evaporation associated with enhanced westerly wind stress, leading to negative SST anomalies about 10 days after the convection. The relationships are robust from year to year, including both phases of the El Niño–Southern Oscillation (ENSO) although the eastward extent of the region over which the relationship holds varies with the phase of ENSO, consistent with the variations in the eastward extent of the warm pool and westerly winds. The spatial scale of the anomalies is about 60° longitude, consistent with the scale of the intraseasonal oscillation. The spatial and temporal characteristics of the surface flux and SST perturbations are consistent with the surface flux variations forcing the ocean, and the magnitudes of the anomalies are consistent with mixed-layer depths appropriate to the Indian Ocean and west Pacific

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we discuss current work concerning Appearance-based and CAD-based vision; two opposing vision strategies. CAD-based vision is geometry based, reliant on having complete object centred models. Appearance-based vision builds view dependent models from training images. Existing CAD-based vision systems that work with intensity images have all used one and zero dimensional features, for example lines, arcs, points and corners. We describe a system we have developed for combining these two strategies. Geometric models are extracted from a commercial CAD library of industry standard parts. Surface appearance characteristics are then learnt automatically by observing actual object instances. This information is combined with geometric information and is used in hypothesis evaluation. This augmented description improves the systems robustness to texture, specularities and other artifacts which are hard to model with geometry alone, whilst maintaining the advantages of a geometric description.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

B. subtilis under certain types of media and fermentation conditions can produce surfactin, a biosurfactant which belongs to the lipopeptide class. Surfactin has exceptional surfactant activity, and exhibits some interesting biological characteristics such as antibacterial activity, antitumoral activity against ascites carcinoma cells, and a hypocholesterolemic activity that inhibits cAMP phosphodiesterase, as well as having anti-HIV properties. A cost effective recovery and purification of surfactin from fermentation broth using a two-step ultrafiltration (UF) process has been developed in order to reduce the cost of surfactin production. In this study, competitive adsorption of surfactin and proteins at the air-water interface was studied using surface pressure measurements. Small volumes of bovine serum albumin (BSA) and β-casein solutions were added to the air-water interface on a Langmuir trough and allowed to stabilise before the addition of surfactin to the subphase. Contrasting interfacial behaviour of proteins was observed with β-casein showing faster initial adsorption compared to BSA. On introduction of surfactin both proteins were displaced but a longer time were taken to displace β-casein. Overall the results showed surfactin were highly surface-active by forming a β-sheet structure at the air-water interface after reaching its critical micelle concentration (CMC) and were effective in removing both protein films, which can be explained following the orogenic mechanism. Results showed that the two-step UF process was effective to achieve high purity and fully functional surfactin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[1] Remotely sensed, multiannual data sets of shortwave radiative surface fluxes are now available for assimilation into land surface schemes (LSSs) of climate and/or numerical weather prediction models. The RAMI4PILPS suite of virtual experiments assesses the accuracy and consistency of the radiative transfer formulations that provide the magnitudes of absorbed, reflected, and transmitted shortwave radiative fluxes in LSSs. RAMI4PILPS evaluates models under perfectly controlled experimental conditions in order to eliminate uncertainties arising from an incomplete or erroneous knowledge of the structural, spectral and illumination related canopy characteristics typical for model comparison with in situ observations. More specifically, the shortwave radiation is separated into a visible and near-infrared spectral region, and the quality of the simulated radiative fluxes is evaluated by direct comparison with a 3-D Monte Carlo reference model identified during the third phase of the Radiation transfer Model Intercomparison (RAMI) exercise. The RAMI4PILPS setup thus allows to focus in particular on the numerical accuracy of shortwave radiative transfer formulations and to pinpoint to areas where future model improvements should concentrate. The impact of increasing degrees of structural and spectral subgrid variability on the simulated fluxes is documented and the relevance of any thus emerging biases with respect to gross primary production estimates and shortwave radiative forcings due to snow and fire events are investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results are presented of a study of a performance of various track-side railway noise barriers, determined by using a two- dimensional numerical boundary element model. The basic model uses monopole sources and has been adapted to allow the sources to exhibit dipole-type radiation characteristics. A comparison of boundary element predictions of the performance of simple barriers and vehicle shapes is made with results obtained by using the standard U.K. prediction method. The results obtained from the numerical model indicate that modifying the source to exhibit dipole characteristics becomes more significant as the height of the barrier increases, and suggest that for any particular shape, absorbent barriers provide much better screening efficiency than the rigid equivalent. The cross-section of the rolling stock significantly affects the performance of rigid barriers. If the position of the upper edge is fixed, the results suggest that simple absorptive barriers provide more effective screening than tilted barriers. The addition of multiple edges to a barrier provides additional insertion loss without any increase in barrier height.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Airborne dust affects the Earth's energy balance — an impact that is measured in terms of the implied change in net radiation (or radiative forcing, in W m-2) at the top of the atmosphere. There remains considerable uncertainty in the magnitude and sign of direct forcing by airborne dust under current climate. Much of this uncertainty stems from simplified assumptions about mineral dust-particle size, composition and shape, which are applied in remote sensing retrievals of dust characteristics and dust-cycle models. Improved estimates of direct radiative forcing by dust will require improved characterization of the spatial variability in particle characteristics to provide reliable information dust optical properties. This includes constraints on: (1) particle-size distribution, including discrimination of particle subpopulations and quantification of the amount of dust in the sub-10 µm to <0.1 µm mass fraction; (2) particle composition, specifically the abundance of iron oxides, and whether particles consist of single or multi-mineral grains; (3) particle shape, including degree of sphericity and surface roughness, as a function of size and mineralogy; and (4) the degree to which dust particles are aggregated together. The use of techniques that measure the size, composition and shape of individual particles will provide a better basis for optical modelling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The centre of cities, characterised by spatial and temporal complexity, are challenging environments for micrometeorological research. This paper considers the impact of sensor location and heterogeneity of the urban surface on flux observations in the dense city centre of London, UK. Data gathered at two sites in close vicinity, but with different measurement heights, were analysed to investigate the influence of source area characteristics on long-term radiation and turbulent heat fluxes. Combining consideration of diffuse radiation and effects of specular reflections, the non-Lambertian urban surface is found to impact the measurements of surface albedo. Comparisons of observations from the two sites reveal that turbulent heat fluxes are similar under some flow conditions. However, they mostly observe processes at different scales due to their differing measurement heights, highlighting the critical impact of siting sensors in urban areas. A detailed source area analysis is presented to investigate the surface controls influencing the energy exchanges at the different scales

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Surface Urban Energy and Water Balance Scheme (SUEWS) is developed to include snow. The processes addressed include accumulation of snow on the different urban surface types: snow albedo and density aging, snow melting and re-freezing of meltwater. Individual model parameters are assessed and independently evaluated using long-term observations in the two cold climate cities of Helsinki and Montreal. Eddy covariance sensible and latent heat fluxes and snow depth observations are available for two sites in Montreal and one in Helsinki. Surface runoff from two catchments (24 and 45 ha) in Helsinki and snow properties (albedo and density) from two sites in Montreal are also analysed. As multiple observation sites with different land-cover characteristics are available in both cities, model development is conducted independent of evaluation. The developed model simulates snowmelt related runoff well (within 19% and 3% for the two catchments in Helsinki when there is snow on the ground), with the springtime peak estimated correctly. However, the observed runoff peaks tend to be smoother than the simulated ones, likely due to the water holding capacity of the catchments and the missing time lag between the catchment and the observation point in the model. For all three sites the model simulates the timing of the snow accumulation and melt events well, but underestimates the total snow depth by 18–20% in Helsinki and 29–33% in Montreal. The model is able to reproduce the diurnal pattern of net radiation and turbulent fluxes of sensible and latent heat during cold snow, melting snow and snow-free periods. The largest model uncertainties are related to the timing of the melting period and the parameterization of the snowmelt. The results show that the enhanced model can simulate correctly the exchange of energy and water in cold climate cities at sites with varying surface cover.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The global characteristics of tropical cyclones (TCs) simulated by several climate models are analyzed and compared with observations. The global climate models were forced by the same sea surface temperature (SST) fields in two types of experiments, using climatological SST and interannually varying SST. TC tracks and intensities are derived from each model's output fields by the group who ran that model, using their own preferred tracking scheme; the study considers the combination of model and tracking scheme as a single modeling system, and compares the properties derived from the different systems. Overall, the observed geographic distribution of global TC frequency was reasonably well reproduced. As expected, with the exception of one model, intensities of the simulated TC were lower than in observations, to a degree that varies considerably across models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A one-dimensional surface energy-balance lake model, coupled to a thermodynamic model of lake ice, is used to simulate variations in the temperature of and evaporation from three Estonian lakes: Karujärv, Viljandi and Kirjaku. The model is driven by daily climate data, derived by cubic-spline interpolation from monthly mean data, and was run for periods of 8 years (Kirjaku) up to 30 years (Viljandi). Simulated surface water temperature is in good agreement with observations: mean differences between simulated and observed temperatures are from −0.8°C to +0.1°C. The simulated duration of snow and ice cover is comparable with observed. However, the model generally underpredicts ice thickness and overpredicts snow depth. Sensitivity analyses suggest that the model results are robust across a wide range (0.1–2.0 m−1) of lake extinction coefficient: surface temperature differs by less than 0.5°C between extreme values of the extinction coefficient. The model results are more sensitive to snow and ice albedos. However, changing the snow (0.2–0.9) and ice (0.15–0.55) albedos within realistic ranges does not improve the simulations of snow depth and ice thickness. The underestimation of ice thickness is correlated with the overestimation of snow cover, since a thick snow layer insulates the ice and limits ice formation. The overestimation of snow cover results from the assumption that all the simulated winter precipitation occurs as snow, a direct consequence of using daily climate data derived by interpolation from mean monthly data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a modelling study of processes controlling the summer melt of the Arctic sea ice cover. We perform a sensitivity study and focus our interest on the thermodynamics at the ice–atmosphere and ice–ocean interfaces. We use the Los Alamos community sea ice model CICE, and additionally implement and test three new parametrization schemes: (i) a prognostic mixed layer; (ii) a three equation boundary condition for the salt and heat flux at the ice–ocean interface; and (iii) a new lateral melt parametrization. Recent additions to the CICE model are also tested, including explicit melt ponds, a form drag parametrization and a halodynamic brine drainage scheme. The various sea ice parametrizations tested in this sensitivity study introduce a wide spread in the simulated sea ice characteristics. For each simulation, the total melt is decomposed into its surface, bottom and lateral melt components to assess the processes driving melt and how this varies regionally and temporally. Because this study quantifies the relative importance of several processes in driving the summer melt of sea ice, this work can serve as a guide for future research priorities.