34 resultados para Superplastic Forming
Resumo:
Two styrene-isoprene-styrene block copolymers Vector 4111 and 4113, exhibiting cylindrical (18 wt % PS) and spherical (16 wt % PS) morphology, respectively, have been examined under uniaxial elongation up to 200% strain. On the basis of stress-strain data, mechanical properties are compared for isotropic and oriented polystyrene domains. The structure at various stages of deformation has been determined from SAXS patterns in three planes and two principal deformation directions with respect to orientation. Samples showed a very high degree of hexagonal packing, resulting in an X-ray pattern taken parallel to the cylinder alignment approaching single crystal ordering. Cylinders were aligned with the closest packed planes parallel to film surface. Particular attention has been paid to a lattice deformation process occurring during the first stretching and relaxation cycle. For a copolymer with oriented cylindrical morphology the deformation was affine up to 120% strain. The microdomain spacing was calculated parallel and perpendicular to the stretching direction. The cylindrical microstructure orientation, quantified by Hermans' orientation factor reduced during elongation of oriented polymer, while the elongation of isotropic sample caused an increase of orientation. Deformation of all studied morphologies was reversible.
Resumo:
Novel, linear, soluble, high-molecular-weight, film-forming polymers and copolymers in which main-chain crown ether units alternate with aliphatic (C-10-C-16) units have been obtained for the first time from aromatic electrophilic substitution reactions of crown ethers by aliphatic dicarboxylic acids followed by reduction of the carbonyl groups. The crown ether unit is dibenzo-18-crown-6, dibenzo-21-crown-7, dibenzo-24-crown-8, or dibenzo-30-crown-10; the aliphatic spacer is derived from a dicarboxylic acid (sebacic, 1,12-dodecanedicarboxylic, hexadecanedioic or 1,4-phenylenediacetic acids). The reactions were performed at 35 degrees C in a mixture of methanesulfonic acid (MSA) with phosphorus pentoxide, 12:1 (w/w), (Eaton's reagent). The carbonyl groups in the polyketones obtained were completely reduced to methylene linkages by treatment at room temperature with triethylsilane in a mixture of trifluoroacetic acid and dichloromethane. Polymers containing in the main chain crown ethers alternating with oxyindole fragments were prepared by one-pot condensation of crown ethers with isatin in a medium of Eaton's reagent. A possible reaction mechanism is suggested. According to IR and NMR analyses, the polyacylation reactions lead to the formation of isomeric (syn/anti-substituted) crown ether units in the main chain. The polymers obtained were soluble in the common organic solvents, and flexible transparent films could be cast from the solutions. DSC and X-ray studies of the polymers with "symmetrical" crown ethers reveal the presence of the endotherms corresponding to the supramolecular assemblies.
Resumo:
Bis-[(p-methoxybenzyl)cyclopentadienyl] titanium dichloride, better known as Titanocene Y, is a newly synthesized titanium-based anticancer drug. We studied the antitumor activity of Titanocene Y with concentrations of 2.1, 21 and 210 μmol/l against a range of freshly explanted human tumors, using an in-vitro soft agar cloning system. The sensitivity against Titanocene Y was highly remarkable in the case of renal cell, ovarian, nonsmall cell lung and colon cancer. In particular the surprisingly good response of nonsmall cell lung cancer and colon cancer against Titanocene Y at its lowest concentration of 2.1 μmol/l was well comparable or better with respect to cisplatin, given at a concentration of 1.0 μmol/l. Further clinical development of Titanocene Y appears to be warranted because of the broad cytotoxic activity shown and the specific activity of Titanocene Y against renal cell cancer.
Resumo:
Bis-valine derivatives or malonamide (Guha,S.; Drew, M.G.B. Small 2008, 4, 1993-2005) and a bis-valine derivative of 1,1-cyclopropone dicarboxamide were used as building blocks for the construction of supramolecular helical structures. The six-membered intramolecular hydrogen-bonded scaffold is formed, and this acts as a unique supramolecular synthon for the construction of a pseudopeptide-based supramolecular helical structure. However, in absence of this intramolecular hydrogen bond. intermolecular hydrogen bonds are formed among the peptide strands. This leads to a supramolecular beta-sheet structure. Proper selection of the supramolecular synthon (six-membered intramolecular hydrogenbonded scaffold) promotes supramolecular helix formation, and a deviation from this molecular structure dictates the disruption of supramolecular helicity. In this study, six crystal structures have been used to demonstrate that a change in the central angle and/or the central core structure of dicarboxamides can be used to design either a supramolecular helix or a beta-sheet.
Resumo:
In civil applications, many researches on MIMO technique have achieved great progress. However, we consider military applications here. Differing from civil applications, military MIMO system may face many kinds of interferences, and the interference source may even not be equipped with multiple antennas. So the military MIMO system may receive some kind of strong interference coming from certain direction. Therefore, the military MIMO system must have capability to suppress directional interference. This paper presents a scheme to suppress directional interference for STBC MIMO system based on beam-forming. Simulation result shows that the scheme is valid to suppress directional strong interference for STBC MIMO system although with some performance loss compared with the ideal case of non-interference.
Resumo:
A peptide amphiphile (PA) C16-KTTKS, containing a pentapeptide headgroup based on a sequence from procollagen I attached to a hexadecyl lipid chain, self-assembles into extended nanotapes in aqueous solution. The tapes are based on bilayer structures, with a 5.2 nm spacing. Here, we investigate the effect of addition of the oppositely charged anionic surfactant sodium dodecyl sulfate (SDS) via AFM, electron microscopic methods, small-angle X-ray scattering and X-ray diffraction among other methods. We show that addition of SDS leads to a transition from tapes to fibrils, via intermediate states that include twisted ribbons. Addition of SDS is also shown to enhance the development of remarkable lateral ‘‘stripes’’ on the nanostructures, which have a 4 nm periodicity. This is ascribed to counterion condensation. The transition in the nanostructure leads to changes in macroscopic properties, in particular a transition from sol to gel is noted on increasing SDS (with a further reentrant transition to sol on further increase of SDS concentration). Formation of a gel may be useful in applications of this PA in skincare applications and we show that this can be controlled via development of a network of fine stranded fibrils.
Resumo:
The self-assembly of the peptide amphiphile (PA) hexadecyl-(β-alaninehistidine) is examined in aqueous solution, along with its mixtures with multilamellar vesicles formed by DPPC (dipalmitoyl phosphatidylcholine). This PA, denoted C16-βAH, contains a dipeptide headgroup corresponding to the bioactive molecule L-carnosine. It is found to selfassemble into nanotapes based on stacked layers of molecules. Bilayers are found to coexist with monolayers in which the PA molecules pack with alternating up−down arrangement so that the headgroups decorate both surfaces. The bilayers become dehydrated as PA concentration increases and the number of layers in the stack decreases to produce ultrathin nanotapes comprised of 2−3 bilayers. Addition of the PA to DPPC multilamellar vesicles leads to a transition to well-defined unilamellar vesicles. The unique ability to modulate the stacking of this PA as a function of concentration, combined with its ability to induce a multilamellar to unilamellar thinning of DPPC vesicles, may be useful in biomaterials applications where the presentation of the peptide function at the surface of self-assembled nanostructures is crucial.
Resumo:
Acrylamide is a probable human carcinogen that forms in plant-derived foods when free asparagine and reducing sugars react at high temperatures. The identification of rye varieties with low acrylamide-forming potential or agronomic conditions that produce raw material with low acrylamide precursor concentrations would reduce the acrylamide formed in baked rye foods without the need for additives or potentially costly changes to processes. This work compared five commercial rye varieties grown under a range of fertilisation regimes to investigate the effects of genotype and nutrient (nitrogen and sulphur) availability on the accumulation of acrylamide precursors. A strong correlation was established between the free asparagine concentration of grain and the acrylamide formed upon heating. The five rye varieties accumulated different concentrations of free asparagine in the grain, indicating that there is genetic control of this trait and that variety selection could be useful in reducing acrylamide levels in rye products. High levels of nitrogen fertilisation were found to increase the accumulation of free asparagine, showing that excessive nitrogen application should be avoided in order not to exacerbate the problem of acrylamide formation. This effect of nitrogen was mitigated in two of the varieties by the application of sulphur.
Resumo:
Nitrogen (N) fertilizer is used routinely in potato (Solanum tuberosum) cultivation to maximize yield. However, it also affects sugar and free amino acid concentrations in potato tubers, and this has potential implications for food quality and safety because free amino acids and reducing sugars participate in the Maillard reaction during high-temperature cooking and processing. This results in the formation of color, aroma, and flavor compounds, but also some undesirable contaminants, including acrylamide, which forms when the amino acid that participates in the final stages of the reaction is asparagine. Another mineral, sulfur (S), also has profound effects on tuber composition. In this study, 13 varieties of potato were grown in a field trial in 2010 and treated with different combinations of N and S. Potatoes were analyzed immediately after harvest to show the effect of N and S fertilization on concentrations of free asparagine, other free amino acids, sugars, and acrylamide-forming potential. The study showed that N application can affect acrylamide-forming potential in potatoes but that the effect is type- (French fry, chipping, and boiling) and variety-dependent, with most varieties showing an increase in acrylamide formation in response to increased N but two showing a decrease. S application reduced glucose concentrations and mitigated the effect of high N application on the acrylamide-forming potential of some of the French fry-type potatoes.
Resumo:
Despite the wealth of valuable information that has been generated by motivation studies to date, there are certain limitations in the common approaches. Quantitative and psychometric approaches to motivation research that have dominated in recent decades provided epiphenomenal descriptions of learner motivation within different contexts. However, these approaches assume homogeneity within a given group and often mask the variation between learners within the same, and different, contexts. Although these studies have provided empirical data to form and validate theoretical constructs, they have failed to recognise learners as individual ‘people’ that interact with their context. Learning context has become increasingly explicit in motivation studies, (see Coleman et al. 2007 and Housen et al. 2011), however it is generally considered as a background variable which is pre-existing and external to the individual. Stemming from the recent ‘social turn’ (Block 2003) in SLA research from a more cognitive-linguistic perspective to a more context-specific view of language learning, there has been an upsurge in demand for a greater focus on the ‘person in context’ in motivation research (Ushioda 2011). This paper reports on the findings of a longitudinal study of young English learners of French as they transition from primary to secondary school. Over 12 months, the study employed a mixed-method approach in order to gain an in-depth understanding of how the learners’ context influenced attitudes to language learning. The questionnaire results show that whilst the learners displayed some consistent and stable motivational traits over the 12 months, there were significant differences for learners within different contexts in terms of their attitudes to the language classroom and their levels of self-confidence. A subsequent examination of the qualitative focus group data provided an insight into how and why these attitudes were formed and emphasised the dynamic and complex interplay between learners and their context.
Resumo:
The heat and mass balance of the Arctic Ocean is very sensitive to the growth and decay of sea ice and the interaction between the heat and salt fields in the oceanic boundary layer. The hydraulic roughness of sea ice controls the detailed nature of turbulent fluxes in the boundary layer and hence is an important ingredient in model parameterizations. We describe a novel mechanism for the generation of corrugations of the sea ice–ocean interface, present a mathematical analysis elucidating the mechanism, and present numerical calculations for geophysically relevant conditions. The mechanism relies on brine flows developing in the sea ice due to Bernoulli suction by flow of ocean past the interface. For oceanic shears at the ice interface of 0.2 s−1, we expect the corrugations to form with a wavelength dependent upon the permeability structure of the sea ice which is described herein. The mechanism should be particularly important during sea ice formation in wind-maintained coastal polynyas and in leads. This paper applies our earlier analyses of the fundamental instability to field conditions and extends it to take account of the anisotropic and heterogeneous permeability of sea ice.
Resumo:
Self-consistent field theory (SCFT) is used to study the step edges that occur in thin films of lamellar-forming diblock copolymer, when the surfaces each have an affinity for one of the polymer components. We examine film morphologies consisting of a stack of ν continuous monolayers and one semi-infinite bilayer, the edge of which creates the step. The line tension of each step morphology is evaluated and phase diagrams are constructed showing the conditions under which the various morphologies are stable. The predicted behavior is then compared to experiment. Interestingly, our atomic force microscopy (AFM) images of terraced films reveal a distinct change in the character of the steps with increasing ν, which is qualitatively consistent with our SCFT phase diagrams. Direct quantitative comparisons are not possible because the SCFT is not yet able to probe the large polymer/air surface tensions characteristic of experiment.
Resumo:
Terahertz power transmission spectroscopy (TPTS) measurements have been carried out to detect a difference between the hydration shells of G-quadruplex forming DNA sequences in strand and quadruplex configuration. Evidence of a change in hydration shell was observed.