131 resultados para Sugar plants
Resumo:
Land plants have had the reputation of being problematic for DNA barcoding for two general reasons: (i) the standard DNA regions used in algae, animals and fungi have exceedingly low levels of variability and (ii) the typically used land plant plastid phylogenetic markers (e.g. rbcL, trnL-F, etc.) appear to have too little variation. However, no one has assessed how well current phylogenetic resources might work in the context of identification (versus phylogeny reconstruction). In this paper, we make such an assessment, particularly with two of the markers commonly sequenced in land plant phylogenetic studies, plastid rbcL and internal transcribed spacers of the large subunits of nuclear ribosomal DNA (ITS), and find that both of these DNA regions perform well even though the data currently available in GenBank/EBI were not produced to be used as barcodes and BLAST searches are not an ideal tool for this purpose. These results bode well for the use of even more variable regions of plastid DNA (such as, for example, psbA-trnH) as barcodes, once they have been widely sequenced. In the short term, efforts to bring land plant barcoding up to the standards being used now in other organisms should make swift progress. There are two categories of DNA barcode users, scientists in fields other than taxonomy and taxonomists. For the former, the use of mitochondrial and plastid DNA, the two most easily assessed genomes, is at least in the short term a useful tool that permits them to get on with their studies, which depend on knowing roughly which species or species groups they are dealing with, but these same DNA regions have important drawbacks for use in taxonomic studies (i.e. studies designed to elucidate species limits). For these purposes, DNA markers from uniparentally (usually maternally) inherited genomes can only provide half of the story required to improve taxonomic standards being used in DNA barcoding. In the long term, we will need to develop more sophisticated barcoding tools, which would be multiple, low-copy nuclear markers with sufficient genetic variability and PCR-reliability; these would permit the detection of hybrids and permit researchers to identify the 'genetic gaps' that are useful in assessing species limits.
Resumo:
We have developed a heterologous expression system for transmembrane lens main intrinsic protein (MIP) in Nicotiana tabacum plant tissue. A native bovine MIP26 amplicon was subcloned into an expression cassette under the control of a constitutive Cauliflower Mosaic Virus promoter, also containing a neomycin phosphotransferase operon. This cassette was transformed into Agrobacterium tumefaciens by triparental mating and used to infect plant tissue grown in culture. Recombinant plants were selected by their ability to grow and root on kanamycin-containing media. The presence of MIP in the plant tissues was confirmed by PCR, RT-PCR and immunohistochemistry. A number of benefits of this system for the study of MIP will be discussed, and also its application as a tool for the study of heterologously expressed proteins in general.
Resumo:
It has been successfully demonstrated, using epidermis explants of sugar beet (Beta vulgaris L.), that stomatal guard cells retain full totipotent capacity. Despite having one of the highest degrees of morphological adaptation and a unique physiological specialization, it is possible to induce a re-expression of full (embryogenic) genetic potential in these cells in situ by reversing their highly differentiated nature to produce regenerated plants via a callus stage. The importance of these findings both to stomatal research and to our understanding of cytodifferentiation in plants is discussed.
Resumo:
The Organisation for Economic Co-operation and Development (OECD) Terrestrial plant test is often used for the ecological risk assessment of contaminated land. However, its origins in plant protection product testing mean that the species recommended in the OECD guidelines are unlikely to occur on contaminated land. Six alternative species were tested on contaminated soils from a former Zn smelter and a metal fragmentizer with elevated concentrations of Cd, Cu, Pb, and Zn. The response of the alternative species was compared to two species recommended by the OECD; Lolium perenne (perennial ryegrass) and Trifolium pratense (red clover). Urtica dioica (stinging nettle) and Poa annua (annual meadow-grass) had low emergence rates in the control soil so may be considered unsuitable. Festuca rubra (chewings fescue), Holcus lanatus (Yorkshire fog), Senecio vulgaris (common groundsel), and Verbascum thapsus (great mullein) offer good alternatives to the OECD species. In particular, H. lanatus and S. vulgaris were more sensitive to the soils with moderate concentrations of Cd, Cu, Pb, and Zn than the OECD species.
Resumo:
Nonlinear adjustment toward long-run price equilibrium relationships in the sugar-ethanol-oil nexus in Brazil is examined. We develop generalized bivariate error correction models that allow for cointegration between sugar, ethanol, and oil prices, where dynamic adjustments are potentially nonlinear functions of the disequilibrium errors. A range of models are estimated using Bayesian Monte Carlo Markov Chain algorithms and compared using Bayesian model selection methods. The results suggest that the long-run drivers of Brazilian sugar prices are oil prices and that there are nonlinearities in the adjustment processes of sugar and ethanol prices to oil price but linear adjustment between ethanol and sugar prices.
Resumo:
There is ongoing debate concerning the possible environmental and human health impacts of growing genetically modified (GM) crops. Here, we report the results of a life-cycle assessment (LCA) comparing the environmental and human health impacts of conventional sugar beet growing regimes in the UK and Germany with those that might be expected if GM herbicide-tolerant (to glyphosate) sugar beet is commercialized. The results presented for a number of environmental and human health impact categories suggest that growing the GM herbicide-tolerant crop would be less harmful to the environment and human health than growing the conventional crop, largely due to lower emissions from herbicide manufacture, transport and field operations. Emissions contributing to negative environmental impacts, such as global warming, ozone depletion, ecotoxicity of water and acidification and nutrification of soil and water, were much lower for the herbicide-tolerant crop than for the conventional crop. Emissions contributing to summer smog, toxic particulate matter and carcinogenicity, which have negative human health impacts, were also substantially lower for the herbicide-tolerant crop. The environmental and human health impacts of growing GM crops need to be assessed on a case-by-case basis using a holistic approach. LCA is a valuable technique for helping to undertake such assessments.
Resumo:
Life-Cycle Assessment (LCA) was used to assess the potential environmental and human health impacts of growing genetically-modified (GM), herbicide-tolerant sugar beet in the UK and Germany compared with conventional sugar beet varieties. The GM variety results in lower potential environmental impacts on global warming, airborne nutrification, ecotoxicity (of soil and water) and watercourse enrichment, and lower potential human health impacts in terms of production of toxic particulates, summer smog, carcinogens and ozone depletion. Although the overall contribution of GM sugar beet to reducing harmful emissions to the environment would be relatively small, the potential for GM crops to reduce pollution from agriculture, including diffuse water pollution, is highlighted.
Resumo:
Despite widespread concern about declines in pollination services, little is known about the patterns of change in most pollinator assemblages. By studying bee and hoverfly assemblages in Britain and the Netherlands, we found evidence of declines (pre- versus post-1980) in local bee diversity in both countries; however, divergent trends were observed in hoverflies. Depending on the assemblage and location, pollinator declines were most frequent in habitat and flower specialists, in univoltine species, and/or in nonmigrants. In conjunction with this evidence, outcrossing plant species that are reliant on the declining pollinators have themselves declined relative to other plant species. Taken together, these findings strongly suggest a causal connection between local extinctions of functionally linked plant and pollinator species.
Resumo:
Genetic differentiation among plant populations and adaptation to local environmental conditions are well documented. However, few studies have examined the potential contribution of plant antagonists, such as insect herbivores and pathogens, to the pattern of local adaptation. Here, a reciprocal transplant experiment was set up at three sites across Europe using two common plant species, Holcus lanatus and Plantago lanceolata. The amount of damage by the main above-ground plant antagonists was measured: a rust fungus infecting Holcus and a specialist beetle feeding on Plantago, both in low-density monoculture plots and in competition with interspecific neighbours. Strong genetic differentiation among provenances in the amount of damage by antagonists in both species was found. Local provenances of Holcus had significantly higher amounts of rust infection than foreign provenances, whereas local provenances of Plantago were significantly less damaged by the specialist beetle than the foreign provenances. The presence of surrounding vegetation affected the amount of damage but had little influence on the ranking of plant provenances. The opposite pattern of population differentiation in resistance to local antagonists in the two species suggests that it will be difficult to predict the consequences of plant translocations for interactions with organisms of higher trophic levels.
Resumo:
The dispersal of plants within botanically rich grassland is an important area of study if such swards are to be maintained. The application of farmyard manure provides a possible mechanism by which seeds contained within hay can be returned/introduced to grasslands. In this study, hay, dung and manure samples taken from farms with botanically rich meadows contained very limited quantities of seeds of desirable species. Digestion by cattle, and storage within a manure heap for 6 months or longer, further reduced seed germination. Samples were characterized by an abundance of the grass, Poa trivialis, with few forbs present. Confirmation of the negative effect of the digestive processes of cattle on seed viability was achieved using an in vitro laboratory experiment. However, this experiment did show that the perennial herbs, Filipendula ulmaria and Sanguisorba officinalis, were able to survive digestion at least as well as P. trivialis. The burial of known quantities of seeds in a manure heap also showed these perennial herbs to be at least as resistant to damage as P. trivialis. The results demonstrate that, given appropriate timing of the hay cut, seeds of species with high conservation value could become incorporated into manure for subsequent dispersal. However, manure dispersal would appear to be of limited value for many species desirable from a conservation viewpoint.
Resumo:
Two types of neem formulations, crude and refined, were tested. The crude form was neem leaves and neem cakes (a by-product left after the extraction of oil from neem seed) and one of the neem-refined products was "aza". The protective and curative soil application of these formulations significantly reduced the number of egg masses and eggs per egg mass on tomato roots. Protective application of neem crude formulations (leaves and cake) did not reduce the invasion of juveniles whereas aza at 0.1% w/w did. Curative application of neem formulations significantly reduced the number of egg masses and eggs per egg mass as compared with the control. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Root-knot nematode [RKN] (Meloidogyne incognita) can increase the severity of Verticillium (V dahliae) and Fusarium (F oxysporum f.sp. vasinfectum) wilt diseases in cotton (Gossypium hirsutum). This study was conducted to determine some of the physiological responses caused by nematode invasion that might decrease resistance to vascular wilt diseases. The effect of RKN was investigated on spore germination and protein, carbohydrate and peroxidase content in the xylem fluids extracted from nematode-infected plants. Two cotton cultivars were used with different levels of resistance to both of the wilt pathogens. Spore germination was greater in the xylem fluids from nematode-infected plants than from nematode-free plants. The effect on spore germination was greater in the Fusarium-resistant cultivar (51%). Analysis of these fluids showed a decrease in total protein and carbohydrate levels for both wilt-resistant cultivars, and an increase in peroxidase concentration. Fluids from nematode-free plants of the Verticillium-resistant cultivar contained 46% more peroxidase than the Fusarium-resistant cultivar. The results provide further evidence that the effect of RKN on vascular wilt resistance is systemic and not only local. Changes in metabolites in the xylem pass from the root to the stem, accelerating disease development.