24 resultados para Strain-rate dependent behaviour
Resumo:
The Sun's open magnetic field, magnetic flux dragged out into the heliosphere by the solar wind, varies by approximately a factor of 2 over the solar cycle. We consider the evolution of open solar flux in terms of a source and loss term. Open solar flux creation is likely to proceed at a rate dependent on the rate of photospheric flux emergence, which can be roughly parameterized by sunspot number or coronal mass ejection rate, when available. The open solar flux loss term is more difficult to relate to an observable parameter. The supersonic nature of the solar wind means open solar flux can only be removed by near-Sun magnetic reconnection between open solar magnetic field lines, be they open or closed heliospheric field lines. In this study we reconstruct open solar flux over the last three solar cycles and demonstrate that the loss term may be related to the degree to which the heliospheric current sheet (HCS) is warped, i.e., locally tilted from the solar rotation direction. This can account for both the large dip in open solar flux at the time of sunspot maximum as well as the asymmetry in open solar flux during the rising and declining phases of the solar cycle. The observed cycle-to-cycle variability is also well matched. Following Sheeley et al. (2001), we attribute modulation of open solar flux by the degree of warp of the HCS to the rate at which opposite polarity open solar flux is brought together by differential rotation.
Resumo:
We present a description of the theoretical framework and "best practice" for using the paleo-climate model component of the Coupled Model Intercomparison Project (Phase 5) (CMIP5) to constrain future projections of climate using the same models. The constraints arise from measures of skill in hindcasting paleo-climate changes from the present over 3 periods: the Last Glacial Maximum (LGM) (21 thousand years before present, ka), the mid-Holocene (MH) (6 ka) and the Last Millennium (LM) (850–1850 CE). The skill measures may be used to validate robust patterns of climate change across scenarios or to distinguish between models that have differing outcomes in future scenarios. We find that the multi-model ensemble of paleo-simulations is adequate for addressing at least some of these issues. For example, selected benchmarks for the LGM and MH are correlated to the rank of future projections of precipitation/temperature or sea ice extent to indicate that models that produce the best agreement with paleoclimate information give demonstrably different future results than the rest of the models. We also find that some comparisons, for instance associated with model variability, are strongly dependent on uncertain forcing timeseries, or show time dependent behaviour, making direct inferences for the future problematic. Overall, we demonstrate that there is a strong potential for the paleo-climate simulations to help inform the future projections and urge all the modeling groups to complete this subset of the CMIP5 runs.
Resumo:
[1] A method is presented to calculate the continuum-scale sea ice stress as an imposed, continuum-scale strain-rate is varied. The continuum-scale stress is calculated as the area-average of the stresses within the floes and leads in a region (the continuum element). The continuum-scale stress depends upon: the imposed strain rate; the subcontinuum scale, material rheology of sea ice; the chosen configuration of sea ice floes and leads; and a prescribed rule for determining the motion of the floes in response to the continuum-scale strain-rate. We calculated plastic yield curves and flow rules associated with subcontinuum scale, material sea ice rheologies with elliptic, linear and modified Coulombic elliptic plastic yield curves, and with square, diamond and irregular, convex polygon-shaped floes. For the case of a tiling of square floes, only for particular orientations of the leads have the principal axes of strain rate and calculated continuum-scale sea ice stress aligned, and these have been investigated analytically. The ensemble average of calculated sea ice stress for square floes with uniform orientation with respect to the principal axes of strain rate yielded alignment of average stress and strain-rate principal axes and an isotropic, continuum-scale sea ice rheology. We present a lemon-shaped yield curve with normal flow rule, derived from ensemble averages of sea ice stress, suitable for direct inclusion into the current generation of sea ice models. This continuum-scale sea ice rheology directly relates the size (strength) of the continuum-scale yield curve to the material compressive strength.
Resumo:
We develop the essential ingredients of a new, continuum and anisotropic model of sea-ice dynamics designed for eventual use in climate simulation. These ingredients are a constitutive law for sea-ice stress, relating stress to the material properties of sea ice and to internal variables describing the sea-ice state, and equations describing the evolution of these variables. The sea-ice cover is treated as a densely flawed two-dimensional continuum consisting of a uniform field of thick ice that is uniformly permeated with narrow linear regions of thinner ice called leads. Lead orientation, thickness and width distributions are described by second-rank tensor internal variables: the structure, thickness and width tensors, whose dynamics are governed by corresponding evolution equations accounting for processes such as new lead generation and rotation as the ice cover deforms. These evolution equations contain contractions of higher-order tensor expressions that require closures. We develop a sea-ice stress constitutive law that relates sea-ice stress to the structure tensor, thickness tensor and strain rate. For the special case of empty leads (containing no ice), linear closures are adopted and we present calculations for simple shear, convergence and divergence.
Resumo:
Accurate high-resolution records of snow accumulation rates in Antarctica are crucial for estimating ice sheet mass balance and subsequent sea level change. Snowfall rates at Law Dome, East Antarctica, have been linked with regional atmospheric circulation to the mid-latitudes as well as regional Antarctic snowfall. Here, we extend the length of the Law Dome accumulation record from 750 years to 2035 years, using recent annual layer dating that extends to 22 BCE. Accumulation rates were calculated as the ratio of measured to modelled layer thicknesses, multiplied by the long-term mean accumulation rate. The modelled layer thicknesses were based on a power-law vertical strain rate profile fitted to observed annual layer thickness. The periods 380–442, 727–783 and 1970–2009 CE have above-average snow accumulation rates, while 663–704, 933–975 and 1429–1468 CE were below average, and decadal-scale snow accumulation anomalies were found to be relatively common (74 events in the 2035-year record). The calculated snow accumulation rates show good correlation with atmospheric reanalysis estimates, and significant spatial correlation over a wide expanse of East Antarctica, demonstrating that the Law Dome record captures larger-scale variability across a large region of East Antarctica well beyond the immediate vicinity of the Law Dome summit. Spectral analysis reveals periodicities in the snow accumulation record which may be related to El Niño–Southern Oscillation (ENSO) and Interdecadal Pacific Oscillation (IPO) frequencies.
Resumo:
The kinetics of the reactions of 1-and 2-butoxy radicals have been studied using a slow-flow photochemical reactor with GC-FID detection of reactants and products. Branching ratios between decomposition, CH3CH(O-.)CH2CH3 CH3CHO + C2H5, reaction (7), and reaction with oxygen, CH3CH(O-.)CH2CH3 + O-2 -> CH3C(O)C2H5 + HO2, reaction (6), for the 2-butoxy radical and between isomerization, CH3CH2CH2CH2O. -> CH2CH2CH2CH2OH, reaction (9), and reaction with oxygen, CH3CH2CH2CH2O. + O-2 -> C3H7CHO + HO2, reaction (8), for the 1-butoxy radical were measured as a function of oxygen concentration at atmospheric pressure over the temperature range 250-318 K. Evidence for the formation of a small fraction of chemically activated alkoxy radicals generated from the photolysis of alkyl nitrite precursors and from the exothermic reaction of 2-butyl peroxy radicals with NO was observed. The temperature dependence of the rate constant ratios for a thermalized system is given by k(7)/k(6) = 5.4 x 1026 exp[(-47.4 +/- 2.8 kJ mol(-1))/RT] molecule cm(-3) and k(9)/k(8) = 1.98 x 10(23) exp[(-22.6 +/- 3.9 kJ mol(-1))/RT] molecule cm(-3). The results agree well with the available experimental literature data at ambient temperature but the temperature dependence of the rate constant ratios is weaker than in current recommendations.
Resumo:
Ruminants are regarded as a primary reservoir for Escherichia coli O157:H7, an important human pathogen. Intimin, encoded by the Locus of Enterocyte Effacement by E. coli O157:H7 organisms, has been cited as one bacterial mechanism of colonisation of the gastrointestinal tract. To confirm this and to test whether a non-toxigenic E. coli O157:H7 strain would colonise and persist in a sheep model, E. coli O157:H7 strain NCTC12900, that lacks Shiga toxin (stx) genes, was evaluated for use in a sheep model of persistence. Following oral inoculation of six-week-old sheep, persistent excretion of NCTC12900 was observed for up to 48 days. E. coli O157-associated attaching-effacing (AE) lesions were detected in the caecum and rectum of one six-week-old lamb, one day after inoculation. This is the first recorded observation of AE lesions in orally inoculated weaned sheep. Also, mean faecal excretion scores of NCTC12900 and an isogenic intimin (eae)-deficient mutant were determined from twenty-four six-week-old orally inoculated sheep. The eae mutant was cleared within 20 days and had lower mean excretion scores at all time points after day one post inoculation compared with the parental strain that was still being excreted at 48 days. Tissues were collected post mortem from animals selected at random from the study groups over the time course of the experiment. The eae mutant was detected in only 1/43 samples but the parental strain was recovered from 64/140 samples primarily from the large bowel although rumen, duodenum, jejunum, and ileum were culture positive especially from animals that were still excreting at and beyond 27 days after inoculation.
Resumo:
The prevalence of enterohaemorrhagic Escherichia coli (EHEC) O157 in poultry is considered minimal compared with other species, especially ruminants. However, deliberate inoculation studies have shown that poultry are readily and persistently infected by this organism but that the mechanism of colonisation is independent of intimin, a recognised factor in host-EHEC interactions in mammalian species, and may be dependent upon flagella. Few strains of EHEC O157 have been tested in poultry and here 1-day-old and 6-week-old chicks were inoculated with seven non-toxigenic E. coli O157 strains in separate experiments. Persistence was measured semi-quantitatively by bacteriological assessment of E. coli O157 cultured from cloacal swabs (shedding score). In the 1-day-old chick model that was monitored for 43 days, all seven strains established well after inoculation. In the 6-week-old chicken model, one strain established and gave consistently high shedding for the duration of the experiment (156 days). Whereas of the remaining six strains, two persisted for 113 days, two persisted for 43 days, one persisted for 22 days and one strain was never detected.
Resumo:
Two new nickel(11) complexes, [NiLL'(H2O)(2)Cl] (1) and [{NiLL'(H2O)](2)(mu-H)]NO3·H2O(2), have been synthesized using a tridentate Schiff base ligand, HL, 2-[(2-dimethylamino-ethylimino)-methyl]-phenol, along with Cl- or NO3(-) as an anionic co-ligand or counter anion (where L'H = salicylaldehyde). Both complexes have been characterized by X-ray crystallography. The structural analyses reveal that complex 1 is mononuclear whereas 2 is a hydrogen-bridged dinuclear complex. The Ni(II) ions possess a distorted octahedral geometry in both structures. Both complexes show negative solvatochromic behaviour with increasing donor number (DN) of the solvent. In more coordinating solvents, like DMSO or methanol, the colour of the solutions is green, whereas in less coordinating solvents, like dichloromethane (DCM) or acetonitrile, it is red.