32 resultados para Statistical analysis techniques
Resumo:
The purpose of this study was to improve the prediction of the quantity and type of Volatile Fatty Acids (VFA) produced from fermented substrate in the rumen of lactating cows. A model was formulated that describes the conversion of substrate (soluble carbohydrates, starch, hemi-cellulose, cellulose, and protein) into VFA (acetate, propionate, butyrate, and other VFA). Inputs to the model were observed rates of true rumen digestion of substrates, whereas outputs were observed molar proportions of VFA in rumen fluid. A literature survey generated data of 182 diets (96 roughage and 86 concentrate diets). Coefficient values that define the conversion of a specific substrate into VFA were estimated meta-analytically by regression of the model against observed VFA molar proportions using non-linear regression techniques. Coefficient estimates significantly differed for acetate and propionate production in particular, between different types of substrate and between roughage and concentrate diets. Deviations of fitted from observed VFA molar proportions could be attributed to random error for 100%. In addition to regression against observed data, simulation studies were performed to investigate the potential of the estimation method. Fitted coefficient estimates from simulated data sets appeared accurate, as well as fitted rates of VFA production, although the model accounted for only a small fraction (maximally 45%) of the variation in VFA molar proportions. The simulation results showed that the latter result was merely a consequence of the statistical analysis chosen and should not be interpreted as an indication of inaccuracy of coefficient estimates. Deviations between fitted and observed values corresponded to those obtained in simulations. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Recent developments in the fields of veterinary epidemiology and economics are critically reviewed and assessed. The impacts of recent technological developments in diagnosis, genetic characterisation, data processing and statistical analysis are evaluated. It is concluded that the acquisition and availability of data remains the principal constraint to the application of available techniques in veterinary epidemiology and economics, especially at population level. As more commercial producers use computerised management systems, the availability of data for analysis within herds is improving. However, consistency of recording and diagnosis remains problematic. Recent trends to the development of national livestock databases intended to provide reassurance to consumers of the safety and traceability of livestock products are potentially valuable sources of data that could lead to much more effective application of veterinary epidemiology and economics. These opportunities will be greatly enhanced if data from different sources, such as movement recording, official animal health programmes, quality assurance schemes, production recording and breed societies can be integrated. However, in order to realise such integrated databases, it will be necessary to provide absolute control of user access to guarantee data security and confidentiality. The potential applications of integrated livestock databases in analysis, modelling, decision-support, and providing management information for veterinary services and livestock producers are discussed. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Population size estimation with discrete or nonparametric mixture models is considered, and reliable ways of construction of the nonparametric mixture model estimator are reviewed and set into perspective. Construction of the maximum likelihood estimator of the mixing distribution is done for any number of components up to the global nonparametric maximum likelihood bound using the EM algorithm. In addition, the estimators of Chao and Zelterman are considered with some generalisations of Zelterman’s estimator. All computations are done with CAMCR, a special software developed for population size estimation with mixture models. Several examples and data sets are discussed and the estimators illustrated. Problems using the mixture model-based estimators are highlighted.
Resumo:
Assaying a large number of genetic markers from patients in clinical trials is now possible in order to tailor drugs with respect to efficacy. The statistical methodology for analysing such massive data sets is challenging. The most popular type of statistical analysis is to use a univariate test for each genetic marker, once all the data from a clinical study have been collected. This paper presents a sequential method for conducting an omnibus test for detecting gene-drug interactions across the genome, thus allowing informed decisions at the earliest opportunity and overcoming the multiple testing problems from conducting many univariate tests. We first propose an omnibus test for a fixed sample size. This test is based on combining F-statistics that test for an interaction between treatment and the individual single nucleotide polymorphism (SNP). As SNPs tend to be correlated, we use permutations to calculate a global p-value. We extend our omnibus test to the sequential case. In order to control the type I error rate, we propose a sequential method that uses permutations to obtain the stopping boundaries. The results of a simulation study show that the sequential permutation method is more powerful than alternative sequential methods that control the type I error rate, such as the inverse-normal method. The proposed method is flexible as we do not need to assume a mode of inheritance and can also adjust for confounding factors. An application to real clinical data illustrates that the method is computationally feasible for a large number of SNPs. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
Introduction A high saturated fatty acid intake is a well recognized risk factor for coronary heart disease development. More recently a high intake of n-6 polyunsaturated fatty acids (PUFA) in combination with a low intake of the long chain n-3 PUFA, eicosapentaenoic acid and docosahexaenoic acid has also been implicated as an important risk factor. Aim To compare total dietary fat and fatty acid intake measured by chemical analysis of duplicate diets with nutritional database analysis of estimated dietary records, collected over the same 3-day study period. Methods Total fat was analysed using soxhlet extraction and subsequently the individual fatty acid content of the diet was determined by gas chromatography. Estimated dietary records were analysed using a nutrient database which was supplemented with a selection of dishes commonly consumed by study participants. Results Bland & Altman statistical analysis demonstrated a lack of agreement between the two dietary assessment techniques for determining dietary fat and fatty acid intake. Conclusion The lack of agreement observed between dietary evaluation techniques may be attributed to inadequacies in either or both assessment techniques. This study highlights the difficulties that may be encountered when attempting to accurately evaluate dietary fat intake among the population.
Resumo:
Population size estimation with discrete or nonparametric mixture models is considered, and reliable ways of construction of the nonparametric mixture model estimator are reviewed and set into perspective. Construction of the maximum likelihood estimator of the mixing distribution is done for any number of components up to the global nonparametric maximum likelihood bound using the EM algorithm. In addition, the estimators of Chao and Zelterman are considered with some generalisations of Zelterman’s estimator. All computations are done with CAMCR, a special software developed for population size estimation with mixture models. Several examples and data sets are discussed and the estimators illustrated. Problems using the mixture model-based estimators are highlighted.
Resumo:
The M protein of coronavirus plays a central role in virus assembly, turning cellular membranes into workshops where virus and host factors come together to make new virus particles. We investigated how M structure and organization is related to virus shape and size using cryo-electron microscopy, tomography and statistical analysis. We present evidence that suggests M can adopt two conformations and that membrane curvature is regulated by one M conformer. Elongated M protein is associated with rigidity, clusters of spikes and a relatively narrow range of membrane curvature. In contrast, compact M protein is associated with flexibility and low spike density. Analysis of several types of virus-like particles and virions revealed that S protein, N protein and genomic RNA each help to regulate virion size and variation, presumably through interactions with M. These findings provide insight into how M protein functions to promote virus assembly.
Resumo:
A first step in interpreting the wide variation in trace gas concentrations measured over time at a given site is to classify the data according to the prevailing weather conditions. In order to classify measurements made during two intensive field campaigns at Mace Head, on the west coast of Ireland, an objective method of assigning data to different weather types has been developed. Air-mass back trajectories calculated using winds from ECMWF analyses, arriving at the site in 1995–1997, were allocated to clusters based on a statistical analysis of the latitude, longitude and pressure of the trajectory at 12 h intervals over 5 days. The robustness of the analysis was assessed by using an ensemble of back trajectories calculated for four points around Mace Head. Separate analyses were made for each of the 3 years, and for four 3-month periods. The use of these clusters in classifying ground-based ozone measurements at Mace Head is described, including the need to exclude data which have been influenced by local perturbations to the regional flow pattern, for example, by sea breezes. Even with a limited data set, based on 2 months of intensive field measurements in 1996 and 1997, there are statistically significant differences in ozone concentrations in air from the different clusters. The limitations of this type of analysis for classification and interpretation of ground-based chemistry measurements are discussed.
Resumo:
Social Networking Sites have recently become a mainstream communications technology for many people around the world. Major IT vendors are releasing social software designed for use in a business/commercial context. These Enterprise 2.0 technologies have impressive collaboration and information sharing functionality, but so far they do not have any organizational network analysis (ONA) features that reveal any patterns of connectivity within business units. This paper shows the impact of organizational network analysis techniques and social networks on organizational performance, we also give an overview on current enterprise social software, and most importantly, we highlight how Enterprise 2.0 can help automate an organizational network analysis.
Resumo:
Novel imaging techniques are playing an increasingly important role in drug development, providing insight into the mechanism of action of new chemical entities. The data sets obtained by these methods can be large with complex inter-relationships, but the most appropriate statistical analysis for handling this data is often uncertain - precisely because of the exploratory nature of the way the data are collected. We present an example from a clinical trial using magnetic resonance imaging to assess changes in atherosclerotic plaques following treatment with a tool compound with established clinical benefit. We compared two specific approaches to handle the correlations due to physical location and repeated measurements: two-level and four-level multilevel models. The two methods identified similar structural variables, but higher level multilevel models had the advantage of explaining a greater proportion of variation, and the modeling assumptions appeared to be better satisfied.
Integrated cytokine and metabolic analysis of pathological responses to parasite exposure in rodents
Resumo:
Parasitic infections cause a myriad of responses in their mammalian hosts, on immune as well as on metabolic level. A multiplex panel of cytokines and metabolites derived from four parasite-rodent models, namely, Plasmodium berghei-mouse, Trypanosoma brucei brucei-mouse, Schistosoma mansoni-mouse, and Fasciola hepatica-rat were statistically coanalyzed. 1H NMR spectroscopy and multivariate statistical analysis were used to characterize the urine and plasma metabolite profiles in infected and noninfected animals. Each parasite generated a unique metabolic signature in the host. Plasma cytokine concentrations were obtained using the ‘Meso Scale Discovery’ multi cytokine assay platform. Multivariate data integration methods were subsequently used to elucidate the component of the metabolic signature which is associated with inflammation and to determine specific metabolic correlates with parasite-induced changes in plasma cytokine levels. For example, the relative levels of acetyl glycoproteins extracted from the plasma metabolite profile in the P. berghei-infected mice were statistically correlated with IFN-γ, whereas the same cytokine was anticorrelated with glucose levels. Both the metabolic and the cytokine data showed a similar spatial distribution in principal component analysis scores plots constructed for the combined murine data, with samples from all infected animals clustering according to the parasite species and whereby the protozoan infections (P. berghei and T. b. brucei) grouped separately from the helminth infection (S. mansoni). For S. mansoni, the main infection-responsive cytokines were IL-4 and IL-5, which covaried with lactate, choline, and D-3-hydroxybutyrate. This study demonstrates that the inherently differential immune response to single and multicellular parasites not only manifests in the cytokine expression, but also consequently imprints on the metabolic signature, and calls for in-depth analysis to further explore direct links between immune features and biochemical pathways.
Resumo:
Synoptic climatology relates the atmospheric circulation with the surface environment. The aim of this study is to examine the variability of the surface meteorological patterns, which are developing under different synoptic scale categories over a suburban area with complex topography. Multivariate Data Analysis techniques were performed to a data set with surface meteorological elements. Three principal components related to the thermodynamic status of the surface environment and the two components of the wind speed were found. The variability of the surface flows was related with atmospheric circulation categories by applying Correspondence Analysis. Similar surface thermodynamic fields develop under cyclonic categories, which are contrasted with the anti-cyclonic category. A strong, steady wind flow characterized by high shear values develops under the cyclonic Closed Low and the anticyclonic H–L categories, in contrast to the variable weak flow under the anticyclonic Open Anticyclone category.
Resumo:
Geophysical time series sometimes exhibit serial correlations that are stronger than can be captured by the commonly used first‐order autoregressive model. In this study we demonstrate that a power law statistical model serves as a useful upper bound for the persistence of total ozone anomalies on monthly to interannual timescales. Such a model is usually characterized by the Hurst exponent. We show that the estimation of the Hurst exponent in time series of total ozone is sensitive to various choices made in the statistical analysis, especially whether and how the deterministic (including periodic) signals are filtered from the time series, and the frequency range over which the estimation is made. In particular, care must be taken to ensure that the estimate of the Hurst exponent accurately represents the low‐frequency limit of the spectrum, which is the part that is relevant to long‐term correlations and the uncertainty of estimated trends. Otherwise, spurious results can be obtained. Based on this analysis, and using an updated equivalent effective stratospheric chlorine (EESC) function, we predict that an increase in total ozone attributable to EESC should be detectable at the 95% confidence level by 2015 at the latest in southern midlatitudes, and by 2020–2025 at the latest over 30°–45°N, with the time to detection increasing rapidly with latitude north of this range.
Resumo:
This chapter applies rigorous statistical analysis to existing datasets of medieval exchange rates quoted in merchants’ letters sent from Barcelona, Bruges and Venice between 1380 and 1310, which survive in the archive of Francesco di Marco Datini of Prato. First, it tests the exchange rates for stationarity. Second, it uses regression analysis to examine the seasonality of exchange rates at the three financial centres and compares them against contemporary descriptions by the merchant Giovanni di Antonio da Uzzano. Third, it tests for structural breaks in the exchange rate series.
Resumo:
The aim of this study was to determine whether geographical differences impact the composition of bacterial communities present in the airways of cystic fibrosis (CF) patients attending CF centers in the United States or United Kingdom. Thirty-eight patients were matched on the basis of clinical parameters into 19 pairs comprised of one U.S. and one United Kingdom patient. Analysis was performed to determine what, if any, bacterial correlates could be identified. Two culture-independent strategies were used: terminal restriction fragment length polymorphism (T-RFLP) profiling and 16S rRNA clone sequencing. Overall, 73 different terminal restriction fragment lengths were detected, ranging from 2 to 10 for U.S. and 2 to 15 for United Kingdom patients. The statistical analysis of T-RFLP data indicated that patient pairing was successful and revealed substantial transatlantic similarities in the bacterial communities. A small number of bands was present in the vast majority of patients in both locations, indicating that these are species common to the CF lung. Clone sequence analysis also revealed that a number of species not traditionally associated with the CF lung were present in both sample groups. The species number per sample was similar, but differences in species presence were observed between sample groups. Cluster analysis revealed geographical differences in bacterial presence and relative species abundance. Overall, the U.S. samples showed tighter clustering with each other compared to that of United Kingdom samples, which may reflect the lower diversity detected in the U.S. sample group. The impact of cross-infection and biogeography is considered, and the implications for treating CF lung infections also are discussed.