20 resultados para Stars: mass-loss
Resumo:
Hypothesis: The aim of this study was to measure the mass loading effect of an active middle-ear implant (the Vibrant Soundbridge) in cadaver temporal bones. Background: Implantable middle ear hearing devices such as Vibrant Soundbridge have been used as an alternative to conventional hearing aids for the rehabilitation of sensorineural hearing loss. Other than the obvious disadvantage of requiring implantation middle ear surgery, it also applies a direct weight on the ossicular chain which, in turn, may have an impact on residual hearing. Previous studies have shown that applying a mass directly on the ossicular chain has a damping effect on its response to sound. However, little has been done to investigate the magnitude and the frequency characteristics of the mass loading effect in devices such as the Vibrant Soundbridge. Methods: Five fresh cadaver temporal bones were used. The stapes displacement was measured using laser Doppler vibrometry before and after the placement of a Vibrant Sound-bridge floating mass transducer. The effects of mass and attachment site were compared with the unloaded response. Measurements were obtained at frequencies between 0.1 and 10 kHz and at acoustic input levels of 100 dB sound pressure level. Each temporal bone acted as its own control. Results: Placement of the floating mass transducer caused a reduction of the stapes displacement. There were variations between the bones. The change of the stapes displacement varied from 0 dB to 28 dB. The effect was more prominent at frequencies above 1,000 Hz. Placing the floating mass transducer close to the incudostapedial joint reduced the mass loading effect. Conclusion: The floating mass transducer produces a measurable reduction of the stapes displacement in the temporal bone model. The effect is more prominent at high frequencies.
Resumo:
The physiology and growth of plasmid-bearing Bacillus subtilis carrying plasmid pPFF1, the non-transformed host, and cells after loss of the plasmid (so-called plasmid-cured cells) were investigated. It was found that, following plasmid loss, cells exhibited phenotypic characteristics different from those of the non-transformed host strains. Compared to plasmid-bearing cells and non-transformed host cells, an approximate 25% increase in the maximum specific growth rate and a more rapid increase in total RNA per unit cell mass were observed in plasmid-cured cells. The total enthalpy associated with irreversible denaturation events was determined in whole cells by differential scanning calorimetry. This showed higher enthalpies for plasmid-cured cells compared with the non-transformed host, which suggests increased ribosome numbers. The result from cellular DNA hybridisation suggests that there was no direct evidence of plasmid integration into the host chromosome. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
The aim of this work was to examine a possible association between resistance of two Escherichia coli strains to high hydrostatic pressure and the susceptibility of their cell membranes to pressure-induced damage. Cells were exposed to pressures between 100 and 700 MPa at room temperature (~20C) in phosphate-buffered-saline. In the more pressure-sensitive strain E. coli 8164, loss of viability occurred at pressures between 100 MPa and 300 MPa and coincided with irreversible loss of membrane integrity as indicated by uptake of propidium iodide (PI) and leakage of protein of molecular mass between 9 and 78 kDa from the cells. Protein release increased to a maximum at 400 MPa then decreased, possibly due to intracellular aggregation at the higher pressures. In the pressure-resistant strain E. coli J1, PI was taken up during pressure treatment but not after decompression indicating that cells were able to reseal their membranes. Loss of viability in strain J1 coincided with the transient loss of membrane integrity between approximately 200 MPa and 600 MPa. In E. coli J1 leakage of protein occurred before loss of viability and the released protein was of low molecular mass, between 8 and 11 kDa and may have been of periplasmic origin. In these two strains differences in pressure resistance appeared to be related to differences in the ability of their membranes to withstand disruption by pressure. However it appears that transient loss of membrane integrity during pressure can lead to cell death irrespective of whether cells can reseal their membranes afterwards.
Resumo:
Open solar flux (OSF) variations can be described by the imbalance between source and loss terms. We use spacecraft and geomagnetic observations of OSF from 1868 to present and assume the OSF source, S, varies with the observed sunspot number, R. Computing the required fractional OSF loss, χ, reveals a clear solar cycle variation, in approximate phase with R. While peak R varies significantly from cycle to cycle, χ is surprisingly constant in both amplitude and waveform. Comparisons of χ with measures of heliospheric current sheet (HCS) orientation reveal a strong correlation. The cyclic nature of χ is exploited to reconstruct OSF back to the start of sunspot records in 1610. This agrees well with the available spacecraft, geomagnetic, and cosmogenic isotope observations. Assuming S is proportional to R yields near-zero OSF throughout the Maunder Minimum. However, χ becomes negative during periods of low R, particularly the most recent solar minimum, meaning OSF production is underestimated. This is related to continued coronal mass ejection (CME) activity, and therefore OSF production, throughout solar minimum, despite R falling to zero. Correcting S for this produces a better match to the recent solar minimum OSF observations. It also results in a cycling, nonzero OSF during the Maunder Minimum, in agreement with cosmogenic isotope observations. These results suggest that during the Maunder Minimum, HCS tilt cycled as over recent solar cycles, and the CME rate was roughly constant at the levels measured during the most recent two solar minima.
Resumo:
Mammalian aging is accompanied by a progressive loss of skeletal muscle, a process called sarcopenia. Myostatin, a secreted member of the transforming growth factor-β family of signaling molecules, has been shown to be a potent inhibitor of muscle growth. Here, we examined whether muscle growth could be promoted in aged animals by antagonizing the activity of myostatin through the neutralizing activity of the myostatin propeptide. We show that a single injection of an AAV8 virus expressing the myostatin propeptide induced an increase in whole body weights and all muscles examined within 7 weeks of treatment. Our cellular studies demonstrate that muscle enlargement was due to selective fiber type hypertrophy, which was accompanied by a shift toward a glycolytic phenotype. Our molecular investigations elucidate the mechanism underpinning muscle hypertrophy by showing a decrease in the expression of key genes that control ubiquitin-mediated protein breakdown. Most importantly, we show that the hypertrophic muscle that develops as a consequence of myostatin propeptide in aged mice has normal contractile properties. We suggest that attenuating myostatin signaling could be a very attractive strategy to halt and possibly reverse age-related muscle loss.