165 resultados para Spatial Statistics, Autologistic Model


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Variable rate applications of nitrogen (N) are of environmental and economic interest. Regular measurements of soil N supply are difficult to achieve practically. Therefore accurate model simulations of soil N supply might provide a practical solution for site-specific management of N. Mineral N, an estimate of N supply, was simulated by the model SUNDIAL (Simulation of Nitrogen Dynamics In Arable Land) at more than 100 locations within three arable fields in Bedfordshire, UK. The results were compared with actual measurements. The outcomes showed that the spatial patterns of the simulations of mineral N corresponded to the measurements but the range of values was underestimated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A 24-member ensemble of 1-h high-resolution forecasts over the Southern United Kingdom is used to study short-range forecast error statistics. The initial conditions are found from perturbations from an ensemble transform Kalman filter. Forecasts from this system are assumed to lie within the bounds of forecast error of an operational forecast system. Although noisy, this system is capable of producing physically reasonable statistics which are analysed and compared to statistics implied from a variational assimilation system. The variances for temperature errors for instance show structures that reflect convective activity. Some variables, notably potential temperature and specific humidity perturbations, have autocorrelation functions that deviate from 3-D isotropy at the convective-scale (horizontal scales less than 10 km). Other variables, notably the velocity potential for horizontal divergence perturbations, maintain 3-D isotropy at all scales. Geostrophic and hydrostatic balances are studied by examining correlations between terms in the divergence and vertical momentum equations respectively. Both balances are found to decay as the horizontal scale decreases. It is estimated that geostrophic balance becomes less important at scales smaller than 75 km, and hydrostatic balance becomes less important at scales smaller than 35 km, although more work is required to validate these findings. The implications of these results for high-resolution data assimilation are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The statistics of cloud-base vertical velocity simulated by the non-hydrostatic mesoscale model AROME are compared with Cloudnet remote sensing observations at two locations: the ARM SGP site in Central Oklahoma, and the DWD observatory at Lindenberg, Germany. The results show that, as expected, AROME significantly underestimates the variability of vertical velocity at cloud-base compared to observations at their nominal resolution; the standard deviation of vertical velocity in the model is typically 4-6 times smaller than observed, and even more during the winter at Lindenberg. Averaging the observations to the horizontal scale corresponding to the physical grid spacing of AROME (2.5 km) explains 70-80% of the underestimation by the model. Further averaging of the observations in the horizontal is required to match the model values for the standard deviation in vertical velocity. This indicates an effective horizontal resolution for the AROME model of at least 4 times the physically-defined grid spacing. The results illustrate the need for special treatment of sub-grid scale variability of vertical velocities in kilometer-scale atmospheric models, if processes such as aerosol-cloud interactions are to be included in the future.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An evaluation is undertaken of the statistics of daily precipitation as simulated by five regional climate models using comprehensive observations in the region of the European Alps. Four limited area models and one variable-resolution global model are considered, all with a grid spacing of 50 km. The 15-year integrations were forced from reanalyses and observed sea surface temperature and sea ice (global model from sea surface only). The observational reference is based on 6400 rain gauge records (10–50 stations per grid box). Evaluation statistics encompass mean precipitation, wet-day frequency, precipitation intensity, and quantiles of the frequency distribution. For mean precipitation, the models reproduce the characteristics of the annual cycle and the spatial distribution. The domain mean bias varies between −23% and +3% in winter and between −27% and −5% in summer. Larger errors are found for other statistics. In summer, all models underestimate precipitation intensity (by 16–42%) and there is a too low frequency of heavy events. This bias reflects too dry summer mean conditions in three of the models, while it is partly compensated by too many low-intensity events in the other two models. Similar intermodel differences are found for other European subregions. Interestingly, the model errors are very similar between the two models with the same dynamical core (but different parameterizations) and they differ considerably between the two models with similar parameterizations (but different dynamics). Despite considerable biases, the models reproduce prominent mesoscale features of heavy precipitation, which is a promising result for their use in climate change downscaling over complex topography.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The wood mouse is a common and abundant species in agricultural landscape and is a focal species in pesticide risk assessment. Empirical studies on the ecology of the wood mouse have provided sufficient information for the species to be modelled mechanistically. An individual-based model was constructed to explicitly represent the locations and movement patterns of individual mice. This together with the schedule of pesticide application allows prediction of the risk to the population from pesticide exposure. The model included life-history traits of wood mice as well as typical landscape dynamics in agricultural farmland in the UK. The model obtains a good fit to the available population data and is fit for risk assessment purposes. It can help identify spatio-temporal situations with the largest potential risk of exposure and enables extrapolation from individual-level endpoints to population-level effects. Largest risk of exposure to pesticides was found when good crop growth in the “sink” fields coincided with high “source” population densities in the hedgerows. Keywords: Population dynamics, Pesticides, Ecological risk assessment, Habitat choice, Agent-based model, NetLogo

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is becoming increasingly important to be able to verify the spatial accuracy of precipitation forecasts, especially with the advent of high-resolution numerical weather prediction (NWP) models. In this article, the fractions skill score (FSS) approach has been used to perform a scale-selective evaluation of precipitation forecasts during 2003 from the Met Office mesoscale model (12 km grid length). The investigation shows how skill varies with spatial scale, the scales over which the data assimilation (DA) adds most skill, and how the loss of that skill is dependent on both the spatial scale and the rainfall coverage being examined. Although these results come from a specific model, they demonstrate how this verification approach can provide a quantitative assessment of the spatial behaviour of new finer-resolution models and DA techniques.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the development of convection-permitting numerical weather prediction the efficient use of high resolution observations in data assimilation is becoming increasingly important. The operational assimilation of these observations, such as Dopplerradar radial winds, is now common, though to avoid violating the assumption of un- correlated observation errors the observation density is severely reduced. To improve the quantity of observations used and the impact that they have on the forecast will require the introduction of the full, potentially correlated, error statistics. In this work, observation error statistics are calculated for the Doppler radar radial winds that are assimilated into the Met Office high resolution UK model using a diagnostic that makes use of statistical averages of observation-minus-background and observation-minus-analysis residuals. This is the first in-depth study using the diagnostic to estimate both horizontal and along-beam correlated observation errors. By considering the new results obtained it is found that the Doppler radar radial wind error standard deviations are similar to those used operationally and increase as the observation height increases. Surprisingly the estimated observation error correlation length scales are longer than the operational thinning distance. They are dependent on both the height of the observation and on the distance of the observation away from the radar. Further tests show that the long correlations cannot be attributed to the use of superobservations or the background error covariance matrix used in the assimilation. The large horizontal correlation length scales are, however, in part, a result of using a simplified observation operator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data from four recent reanalysis projects [ECMWF, NCEP-NCAR, NCEP - Department of Energy ( DOE), NASA] have been diagnosed at the scale of synoptic weather systems using an objective feature tracking method. The tracking statistics indicate that, overall, the reanalyses correspond very well in the Northern Hemisphere (NH) lower troposphere, although differences for the spatial distribution of mean intensities show that the ECMWF reanalysis is systematically stronger in the main storm track regions but weaker around major orographic features. A direct comparison of the track ensembles indicates a number of systems with a broad range of intensities that compare well among the reanalyses. In addition, a number of small-scale weak systems are found that have no correspondence among the reanalyses or that only correspond upon relaxing the matching criteria, indicating possible differences in location and/or temporal coherence. These are distributed throughout the storm tracks, particularly in the regions known for small-scale activity, such as secondary development regions and the Mediterranean. For the Southern Hemisphere (SH), agreement is found to be generally less consistent in the lower troposphere with significant differences in both track density and mean intensity. The systems that correspond between the various reanalyses are considerably reduced and those that do not match span a broad range of storm intensities. Relaxing the matching criteria indicates that there is a larger degree of uncertainty in both the location of systems and their intensities compared with the NH. At upper-tropospheric levels, significant differences in the level of activity occur between the ECMWF reanalysis and the other reanalyses in both the NH and SH winters. This occurs due to a lack of coherence in the apparent propagation of the systems in ERA15 and appears most acute above 500 hPa. This is probably due to the use of optimal interpolation data assimilation in ERA15. Also shown are results based on using the same techniques to diagnose the tropical easterly wave activity. Results indicate that the wave activity is sensitive not only to the resolution and assimilation methods used but also to the model formulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A stochastic parameterization scheme for deep convection is described, suitable for use in both climate and NWP models. Theoretical arguments and the results of cloud-resolving models, are discussed in order to motivate the form of the scheme. In the deterministic limit, it tends to a spectrum of entraining/detraining plumes and is similar to other current parameterizations. The stochastic variability describes the local fluctuations about a large-scale equilibrium state. Plumes are drawn at random from a probability distribution function (pdf) that defines the chance of finding a plume of given cloud-base mass flux within each model grid box. The normalization of the pdf is given by the ensemble-mean mass flux, and this is computed with a CAPE closure method. The characteristics of each plume produced are determined using an adaptation of the plume model from the Kain-Fritsch parameterization. Initial tests in the single column version of the Unified Model verify that the scheme is effective in producing the desired distributions of convective variability without adversely affecting the mean state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A climatology of extratropical cyclones is produced using an objective method of identifying cyclones based on gradients of 1-km height wet-bulb potential temperature. Cyclone track and genesis density statistics are analyzed and this method is found to compare well with other cyclone identification methods. The North Atlantic storm track is reproduced along with the major regions of genesis. Cyclones are grouped according to their genesis location and the corresponding lysis regions are identified. Most of the cyclones that cross western Europe originate in the east Atlantic where the baroclinicity and the sea surface temperature gradients are weak compared to the west Atlantic. East Atlantic cyclones also have higher 1-km height relative vorticity and lower mean sea level pressure at their genesis point than west Atlantic cyclones. This is consistent with the hypothesis that they are secondary cyclones developing on the trailing fronts of preexisting “parent” cyclones. The evolution characteristics of composite west and east Atlantic cyclones have been compared. The ratio of their upper- to lower-level forcing indicates that type B cyclones are predominant in both the west and east Atlantic, with strong upper- and lower-level features. Among the remaining cyclones, there is a higher proportion of type C cyclones in the east Atlantic, whereas types A and C are equally frequent in the west Atlantic.