60 resultados para Space-time Cube
Resumo:
All the orthogonal space-time block coding (O-STBC) schemes are based on the following assumption: the channel remains static over the entire length of the codeword. However, time selective fading channels do exist, and in many cases the conventional O-STBC detectors can suffer from a large error floor in the high signal-to-noise ratio (SNR) cases. This paper addresses such an issue by introducing a parallel interference cancellation (PIC) based detector for the Gi coded systems (i=3 and 4).
Resumo:
Several non-orthogonal space-time block coding (NO-STBC) schemes have recently been proposed to achieve full rate transmission. Some of these schemes, however, suffer from weak robustness: their channel matrices will become ill conditioned in the case of highly correlated channels (HCC). To address this issue, this paper derives a family of robust NO-STBC schemes for four Tx antennas based on the worst case of HCC. These codes turned out to be a superset of Jafarkhani's quasi-orthogonal STBC codes. A computationally affordable linear decoder is also proposed. Although these codes achieve a similar performance to the non-robust schemes under normal channel conditions, they offer a strong robustness against HCC (although possibly yielding a poorer performance). Finally, computer simulations are presented to verify the algorithm design.
Resumo:
The paper deals with an issue in space time block coding (STBC) design. It considers whether, over a time-selective channel, orthogonal STBC (O-STBC) or non-orthogonal STBC (NO-STBC) performs better. It is shown that, under time-selectiveness, once vehicle speed has risen above a certain value, NO-STBC always outperforms O-STBC across the whole SNR range. Also, considering that all existing NO-STBC schemes have been investigated under quasi-static channels only, a new simple receiver is derived for the NO-STBC system under time-selective channels.
Resumo:
This paper proposes the subspace-based space-time (ST) dual-rate blind linear detectors for synchronous DS/CDMA systems, which can be viewed as the ST extension of our previously presented purely temporal dual-rate blind linear detectors. The theoretical analyses on their performances are also carried out. Finally, the two-stage ST blind detectors are presented, which combine the adaptive purely temporal dual-rate blind MMSE filters with the non-adaptive beamformer. Their adaptive stages with parallel structure converge much faster than the corresponding adaptive ST dual-rate blind MMSE detectors, while having a comparable computational complexity to the latter.
Resumo:
We study a two-way relay network (TWRN), where distributed space-time codes are constructed across multiple relay terminals in an amplify-and-forward mode. Each relay transmits a scaled linear combination of its received symbols and their conjugates,with the scaling factor chosen based on automatic gain control. We consider equal power allocation (EPA) across the relays, as well as the optimal power allocation (OPA) strategy given access to instantaneous channel state information (CSI). For EPA, we derive an upper bound on the pairwise-error-probability (PEP), from which we prove that full diversity is achieved in TWRNs. This result is in contrast to one-way relay networks, in which case a maximum diversity order of only unity can be obtained. When instantaneous CSI is available at the relays, we show that the OPA which minimizes the conditional PEP of the worse link can be cast as a generalized linear fractional program, which can be solved efficiently using the Dinkelback-type procedure.We also prove that, if the sum-power of the relay terminals is constrained, then the OPA will activate at most two relays.
Resumo:
The discrete Fourier transmission spread OFDM DFTS-OFDM) based single-carrier frequency division multiple access (SC-FDMA) has been widely adopted due to its lower peak-to-average power ratio (PAPR) of transmit signals compared with OFDM. However, the offset modulation, which has lower PAPR than general modulation, cannot be directly applied into the existing SC-FDMA. When pulse-shaping filters are employed to further reduce the envelope fluctuation of transmit signals of SC-FDMA, the spectral efficiency degrades as well. In order to overcome such limitations of conventional SC-FDMA, this paper for the first time investigated cyclic prefixed OQAMOFDM (CP-OQAM-OFDM) based SC-FDMA transmission with adjustable user bandwidth and space-time coding. Firstly, we propose CP-OQAM-OFDM transmission with unequally-spaced subbands. We then apply it to SC-FDMA transmission and propose a SC-FDMA scheme with the following features: a) the transmit signal of each user is offset modulated single-carrier with frequency-domain pulse-shaping; b) the bandwidth of each user is adjustable; c) the spectral efficiency does not decrease with increasing roll-off factors. To combat both inter-symbolinterference and multiple access interference in frequencyselective fading channels, a joint linear minimum mean square error frequency domain equalization using a prior information with low complexity is developed. Subsequently, we construct space-time codes for the proposed SC-FDMA. Simulation results confirm the powerfulness of the proposed CP-OQAM-OFDM scheme (i.e., effective yet with low complexity).
Resumo:
The anthropogenic heat emissions generated by human activities in London are analysed in detail for 2005–2008 and considered in context of long-term past and future trends (1970–2025). Emissions from buildings, road traffic and human metabolism are finely resolved in space (30 min) and time (200 × 200 m2). Software to compute and visualize the results is provided. The annual mean anthropogenic heat flux for Greater London is 10.9 W m−2 for 2005–2008, with the highest peaks in the central activities zone (CAZ) associated with extensive service industry activities. Towards the outskirts of the city, emissions from the domestic sector and road traffic dominate. Anthropogenic heat is mostly emitted as sensible heat, with a latent heat fraction of 7.3% and a heat-to-wastewater fraction of 12%; the implications related to the use of evaporative cooling towers are briefly addressed. Projections indicate a further increase of heat emissions within the CAZ in the next two decades related to further intensification of activities within this area.
Resumo:
This paper considers the dynamics of deposition around and across the causewayed enclosure at Etton, Cambridgeshire. As a result of detailed re-analysis (particularly refitting) of the pottery and flint assemblages from the site, it proved possible to shed new light both on the temporality of occupation and the character of deposition there. Certain aspects of our work challenge previous interpretations of the site, and of causewayed enclosures in general; but, just as importantly, others confirm materially what has previously been suggested. The quantities of material deposited at Etton reveal that the enclosure was occupied only very intermittently and certainly less regularly than other contemporary sites in the region. The spatial distribution of material suggests that the enclosure ditch lay open for the entirety of the monument's life, but that acts of deposition generally focused on a specific part of the monument at any one time. As well as enhancing our knowledge of one particular causewayed enclosure, it is hoped that this paper – in combination with our earlier analysis of the pit site at Kilverstone – makes clear the potential that detailed material analysis has to offer in relation to our understanding of the temporality of occupation on prehistoric sites in general.
Resumo:
The goal of this work is the efficient solution of the heat equation with Dirichlet or Neumann boundary conditions using the Boundary Elements Method (BEM). Efficiently solving the heat equation is useful, as it is a simple model problem for other types of parabolic problems. In complicated spatial domains as often found in engineering, BEM can be beneficial since only the boundary of the domain has to be discretised. This makes BEM easier than domain methods such as finite elements and finite differences, conventionally combined with time-stepping schemes to solve this problem. The contribution of this work is to further decrease the complexity of solving the heat equation, leading both to speed gains (in CPU time) as well as requiring smaller amounts of memory to solve the same problem. To do this we will combine the complexity gains of boundary reduction by integral equation formulations with a discretisation using wavelet bases. This reduces the total work to O(h
Resumo:
Use of orthogonal space-time block codes (STBCs) with multiple transmitters and receivers can improve signal quality. However, in optical intensity modulated signals, output of the transmitter is non-negative and hence standard orthogonal STBC schemes need to be modified. A generalised framework for applying orthogonal STBCs for free-space IM/DD optical links is presented.
Resumo:
Many numerical models for weather prediction and climate studies are run at resolutions that are too coarse to resolve convection explicitly, but too fine to justify the local equilibrium assumed by conventional convective parameterizations. The Plant-Craig (PC) stochastic convective parameterization scheme, developed in this paper, solves this problem by removing the assumption that a given grid-scale situation must always produce the same sub-grid-scale convective response. Instead, for each timestep and gridpoint, one of the many possible convective responses consistent with the large-scale situation is randomly selected. The scheme requires as input the large-scale state as opposed to the instantaneous grid-scale state, but must nonetheless be able to account for genuine variations in the largescale situation. Here we investigate the behaviour of the PC scheme in three-dimensional simulations of radiative-convective equilibrium, demonstrating in particular that the necessary space-time averaging required to produce a good representation of the input large-scale state is not in conflict with the requirement to capture large-scale variations. The resulting equilibrium profiles agree well with those obtained from established deterministic schemes, and with corresponding cloud-resolving model simulations. Unlike the conventional schemes the statistics for mass flux and rainfall variability from the PC scheme also agree well with relevant theory and vary appropriately with spatial scale. The scheme is further shown to adapt automatically to changes in grid length and in forcing strength.