18 resultados para Sons of Veterans, U.S.A.
Resumo:
The aim of this study was to determine whether geographical differences impact the composition of bacterial communities present in the airways of cystic fibrosis (CF) patients attending CF centers in the United States or United Kingdom. Thirty-eight patients were matched on the basis of clinical parameters into 19 pairs comprised of one U.S. and one United Kingdom patient. Analysis was performed to determine what, if any, bacterial correlates could be identified. Two culture-independent strategies were used: terminal restriction fragment length polymorphism (T-RFLP) profiling and 16S rRNA clone sequencing. Overall, 73 different terminal restriction fragment lengths were detected, ranging from 2 to 10 for U.S. and 2 to 15 for United Kingdom patients. The statistical analysis of T-RFLP data indicated that patient pairing was successful and revealed substantial transatlantic similarities in the bacterial communities. A small number of bands was present in the vast majority of patients in both locations, indicating that these are species common to the CF lung. Clone sequence analysis also revealed that a number of species not traditionally associated with the CF lung were present in both sample groups. The species number per sample was similar, but differences in species presence were observed between sample groups. Cluster analysis revealed geographical differences in bacterial presence and relative species abundance. Overall, the U.S. samples showed tighter clustering with each other compared to that of United Kingdom samples, which may reflect the lower diversity detected in the U.S. sample group. The impact of cross-infection and biogeography is considered, and the implications for treating CF lung infections also are discussed.
Resumo:
Performance modelling is a useful tool in the lifeycle of high performance scientific software, such as weather and climate models, especially as a means of ensuring efficient use of available computing resources. In particular, sufficiently accurate performance prediction could reduce the effort and experimental computer time required when porting and optimising a climate model to a new machine. In this paper, traditional techniques are used to predict the computation time of a simple shallow water model which is illustrative of the computation (and communication) involved in climate models. These models are compared with real execution data gathered on AMD Opteron-based systems, including several phases of the U.K. academic community HPC resource, HECToR. Some success is had in relating source code to achieved performance for the K10 series of Opterons, but the method is found to be inadequate for the next-generation Interlagos processor. The experience leads to the investigation of a data-driven application benchmarking approach to performance modelling. Results for an early version of the approach are presented using the shallow model as an example.
Resumo:
In low-temperature anti-ferromagnetic LaMnO3, strong and localized electronic interactions among Mn 3d electrons prevent a satisfactory description from standard local density and generalized gradient approximations in density functional theory calculations. Here we show that the strong on-site electronic interactions are described well only by using direct and exchange corrections to the intra-orbital Coulomb potential. Only DFT+U calculations with explicit exchange corrections produce a balanced picture of electronic, magnetic and structural observables in agreement with experiment. To understand the reason, a rewriting of the functional form of the +U corrections is presented that leads to a more physical and transparent understanding of the effect of these correction terms. The approach highlights the importance of Hund’s coupling (intra-orbital exchange) in providing anisotropy across the occupation and energy eigenvalues of the Mn d states. This intra-orbital exchange is the key to fully activating the Jahn-Teller distortion, reproducing the experimental band gap and stabilizing the correct magnetic ground state in LaMnO3. The best parameter values for LaMnO3 within the DFT(PBEsol)+U framework are determined to be U = 8 eV and J = 1.9 eV.