198 resultados para Solar PV tariffs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent numerical experiments have demonstrated that the state of the stratosphere has a dynamical impact on the state of the troposphere. To account for such an effect, a number of mechanisms have been proposed in the literature, all of which amount to a large-scale adjustment of the troposphere to potential vorticity (PV) anomalies in the stratosphere. This paper analyses whether a simple PV adjustment suffices to explain the actual dynamical response of the troposphere to the state of the stratosphere, the actual response being determined by ensembles of numerical experiments run with an atmospheric general-circulation model. For this purpose, a new PV inverter is developed. It is shown that the simple PV adjustment hypothesis is inadequate. PV anomalies in the stratosphere induce, by inversion, flow anomalies in the troposphere that do not coincide spatially with the tropospheric changes determined by the numerical experiments. Moreover, the tropospheric anomalies induced by PV inversion are on a larger scale than the changes found in the numerical experiments, which are linked to the Atlantic and Pacific storm-tracks. These findings imply that the impact of the stratospheric state on the troposphere is manifested through the impact on individual synoptic-scale systems and their self-organization in the storm-tracks. Changes in these weather systems in the troposphere are not merely synoptic-scale noise on a larger scale tropospheric response, but an integral part of the mechanism by which the state of the stratosphere impacts that of the troposphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the Eady model, where the meridional potential vorticity (PV) gradient is zero, perturbation energy growth can be partitioned cleanly into three mechanisms: (i) shear instability, (ii) resonance, and (iii) the Orr mechanism. Shear instability involves two-way interaction between Rossby edge waves on the ground and lid, resonance occurs as interior PV anomalies excite the edge waves, and the Orr mechanism involves only interior PV anomalies. These mechanisms have distinct implications for the structural and temporal linear evolution of perturbations. Here, a new framework is developed in which the same mechanisms can be distinguished for growth on basic states with nonzero interior PV gradients. It is further shown that the evolution from quite general initial conditions can be accurately described (peak error in perturbation total energy typically less than 10%) by a reduced system that involves only three Rossby wave components. Two of these are counterpropagating Rossby waves—that is, generalizations of the Rossby edge waves when the interior PV gradient is nonzero—whereas the other component depends on the structure of the initial condition and its PV is advected passively with the shear flow. In the cases considered, the three-component model outperforms approximate solutions based on truncating a modal or singular vector basis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 11-yr solar cycle temperature response to spectrally resolved solar irradiance changes and associated ozone changes is calculated using a fixed dynamical heating (FDH) model. Imposed ozone changes are from satellite observations, in contrast to some earlier studies. A maximum of 1.6 K is found in the equatorial upper stratosphere and a secondary maximum of 0.4 K in the equatorial lower stratosphere, forming a double peak in the vertical. The upper maximum is primarily due to the irradiance changes while the lower maximum is due to the imposed ozone changes. The results compare well with analyses using the 40-yr ECMWF Re-Analysis (ERA-40) and NCEP/NCAR datasets. The equatorial lower stratospheric structure is reproduced even though, by definition, the FDH calculations exclude dynamically driven temperature changes, suggesting an important role for an indirect dynamical effect through ozone redistribution. The results also suggest that differences between the Stratospheric Sounding Unit (SSU)/Microwave Sounding Unit (MSU) and ERA-40 estimates of the solar cycle signal can be explained by the poor vertical resolution of the SSU/MSU measurements. The adjusted radiative forcing of climate change is also investigated. The forcing due to irradiance changes was 0.14 W m−2, which is only 78% of the value obtained by employing the standard method of simple scaling of the total solar irradiance (TSI) change. The difference arises because much of the change in TSI is at wavelengths where ozone absorbs strongly. The forcing due to the ozone change was only 0.004 W m−2 owing to strong compensation between negative shortwave and positive longwave forcings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides some insights on the quasi-biennial oscillation (QBO) modulated 11-year solar cycle (11-yr SC) signals in Northern Hemisphere (NH) winter temperature and zonal wind. Daily ERA-40 Reanalysis and ECMWF Operational data for the period of 1958-2006 were used to examine the seasonal evolution of the QBO-solar cycle relationship at various pressure levels up to the stratopause. The results show that the solar signals in the NH winter extratropics are indeed QBO-phase dependent, moving poleward and downward as winter progresses with a faster descent rate under westerly QBO than under easterly QBO. In the stratosphere, the signals are highly significant in late January to early March and have a life span of 30-50 days. Under westerly QBO, the stratospheric solar signals clearly lead and connect to those in the troposphere in late March and early April where they have a life span of 10 days. As the structure changes considerably from the upper stratosphere to the lower troposphere, the exact month when the maximum solar signals occur depends largely on the altitude chosen. For the low-latitude stratosphere, our analysis supports a vertical double-peaked structure of positive signature of the 11-yr SC in temperature, and demonstrates that this structure is further modulated by the QBO. These solar signals have a longer life span (3-4 months) in comparison to those in the extratropics. The solar signals in the lower stratosphere are stronger in early winter but weaker in late winter, while the reverse holds in the upper stratosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ground surface net solar radiation is the energy that drives physical and chemical processes at the ground surface. In this paper, multi-spectral data from the Landsat-5 TM, topographic data from a gridded digital elevation model, field measurements, and the atmosphere model LOWTRAN 7 are used to estimate surface net solar radiation over the FIFE site. Firstly an improved method is presented and used for calculating total surface incoming radiation. Then, surface albedo is integrated from surface reflectance factors derived from remotely sensed data from Landsat-5 TM. Finally, surface net solar radiation is calculated by subtracting surface upwelling radiation from the total surface incoming radiation.

Relevância:

20.00% 20.00%

Publicador: