26 resultados para Soil composition


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Browse plants play an important role in providing feed for livestock in semi-arid rangelands of Africa. Chemical composition and in vitro ruminal fermentation of leaves collected from Acacia burkei, Acacia tortilis, Acacia nilotica, Dichrostachys cinerea and Ehretia obtusifolia in communal grazing lands in the lowveld of Swaziland is presented. Leaves were collected from trees located on two soil types (i.e., lithosol and vertisol) in the communal land but it had no effect on the chemical composition of tree leaves. The NDFom and ADFom content were highest in D. cinerea and A. burkei and lowest in E. obtusifolia and A. nilotica. Crude protein (CP) contents ranged between 108 g/kg and 122 g/kg DM. D. cinerea had the highest Ca and Mg content, while A. tortilis had the lowest. There were marked variations in K level amongst browse species, with A. tortilis (9.1 g/kg DM) having the highest value. The P, Zn and Fe did not differ between browse species. Soil type and tree species interaction impacted in vitro fermentation parameters. Extent of fermentation, as measured by 48 h cumulative gas production, and organic matter degradability was highest in E. obtusifolia leaves and lowest in D. cinerea leaves within soil type. Fermentation efficiency, as measured by partitioning factors, was highest in A. nilotica leaves. Leaves of E. obtusifolia could be a valuable supplementary feedstuff for ruminant livestock due to its in vitro fermentation characteristics as well as low fibre and moderate CP levels. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigations were conducted during the 2003, 2004 and 2005 growing seasons in northern Greece to evaluate effects of tillage regime (mouldboard plough, chisel plough and rotary tiller), cropping sequence (continuous cotton, cotton-sugar beet rotation and continuous tobacco) and herbicide treatment on weed seedbank dynamics. Amaranthus spp. and Portulaca oleracea were the most abundant species, ranging from 76% to 89% of total weed seeds found in 0-15 and 15-30 cm soil depths during the 3 years. With the mouldboard plough, 48% and 52% of the weed seedbank was found in the 0-15 and 15-30 cm soil horizons, while approximately 60% was concentrated in the upper 15 cm soil horizon for chisel plough and rotary tillage. Mouldboard ploughing significantly buried more Echinochloa crus-galli seeds in the 15-30 cm soil horizon compared with the other tillage regimes. Total seedbank (0-30 cm) of P. oleracea was significantly reduced in cotton-sugar beet rotation compared with cotton and tobacco monocultures, while the opposite occurred for E. crus-galli. Total seed densities of most annual broad-leaved weed species (Amaranthus spp., P. oleracea, Solanum nigrum) and E. crus-galli were lower in herbicide treated than in untreated plots. The results suggest that in light textured soils, conventional tillage with herbicide use gradually reduces seed density of small seeded weed species in the top 15 cm over several years. In contrast, crop rotation with the early established sugar beet favours spring-germinating grass weed species, but also prevents establishment of summer-germinating weed species by the early developing crop canopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review assesses the impacts, both direct and indirect, of man-made changes to the composition of the air over a 200 year period on the severity of arable crop disease epidemics. The review focuses on two well-studied UK arable crops,wheat and oilseed rape, relating these examples to worldwide food security. In wheat, impacts of changes in concentrations of SO2 in air on two septoria diseases are discussed using data obtained from historical crop samples and unpublished experimental work. Changes in SO2 seem to alter septoria disease spectra both through direct effects on infection processes and through indirect effects on soil S status. Work on the oilseed rape diseases phoma stem canker and light leaf spot illustrates indirect impacts of increasing concentrations of greenhouse gases, mediated through climate change. It is projected that, by the 2050s, if diseases are not controlled, climate change will increase yields in Scotland but halve yields in southern England. These projections are discussed in relation to strategies for adaptation to environmental change. Since many strategies take10–15 years to implement, it is important to take appropriate decisions soon. Furthermore, it is essential to make appropriate investment in collation of long-term data, modelling and experimental work to guide such decision-making by industry and government, as a contribution to worldwide food security.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecosystems consist of aboveground and belowground subsystems and the structure of their communities is known to change with distance. However, most of this knowledge originates from visible, aboveground components, whereas relatively little is known about how soil community structure varies with distance and if this variability depends on the group of organisms considered. In the present study, we analyzed 30 grasslands from three neighboring chalk hill ridges in southern UK to determine the effect of geographic distance (1e198 km) on the similarity of bacterial communities and of nematode communities in the soil. We found that for both groups, community similarity decayed with distance and that this spatial pattern was not related to changes either in plant community composition or soil chemistry. Site history may have contributed to the observed pattern in the case of nematodes, since the distance effect depended on the presence of different nematode taxa at one of the hill ridges. On the other hand, site-related differences in bacterial community composition alone could not explain the spatial turnover, suggesting that other factors, such as biotic gradients and local dispersal processes that we did not include in our analysis, may be involved in the observed pattern. We conclude that, independently of the variety of causal factors that may be involved, the decay in similarity with geographic distance is a characteristic feature of both communities of soil bacteria and nematodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a method that employs Earth Observation (EO) data to calculate spatiotemporal estimates of soil heat flux, G, using a physically-based method (the Analytical Method). The method involves a harmonic analysis of land surface temperature (LST) data. It also requires an estimate of near-surface soil thermal inertia; this property depends on soil textural composition and varies as a function of soil moisture content. The EO data needed to drive the model equations, and the ground-based data required to provide verification of the method, were obtained over the Fakara domain within the African Monsoon Multidisciplinary Analysis (AMMA) program. LST estimates (3 km × 3 km, one image 15 min−1) were derived from MSG-SEVIRI data. Soil moisture estimates were obtained from ENVISAT-ASAR data, while estimates of leaf area index, LAI, (to calculate the effect of the canopy on G, largely due to radiation extinction) were obtained from SPOT-HRV images. The variation of these variables over the Fakara domain, and implications for values of G derived from them, were discussed. Results showed that this method provides reliable large-scale spatiotemporal estimates of G. Variations in G could largely be explained by the variability in the model input variables. Furthermore, it was shown that this method is relatively insensitive to model parameters related to the vegetation or soil texture. However, the strong sensitivity of thermal inertia to soil moisture content at low values of relative saturation (<0.2) means that in arid or semi-arid climates accurate estimates of surface soil moisture content are of utmost importance, if reliable estimates of G are to be obtained. This method has the potential to improve large-scale evaporation estimates, to aid land surface model prediction and to advance research that aims to explain failure in energy balance closure of meteorological field studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The controls on aboveground community composition and diversity have been extensively studied, but our understanding of the drivers of belowground microbial communities is relatively lacking, despite their importance for ecosystem functioning. In this study, we fitted statistical models to explain landscape-scale variation in soil microbial community composition using data from 180 sites covering a broad range of grassland types, soil and climatic conditions in England. We found that variation in soil microbial communities was explained by abiotic factors like climate, pH and soil properties. Biotic factors, namely community- weighted means (CWM) of plant functional traits, also explained variation in soil microbial communities. In particular, more bacterial-dominated microbial communities were associated with exploitative plant traits versus fungal-dominated communities with resource-conservative traits, showing that plant functional traits and soil microbial communities are closely related at the landscape scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoscale zerovalent iron (nZVI) has potential for the remediation of organochlorine-contaminated environments. Environmental safety concerns associated with in situ deployment of nZVI include potential negative impacts on indigenous microbes whose biodegradative functions could contribute to contaminant remediation. With respect to a two-step polychlorinated biphenyl remediation scenario comprising nZVI dechlorination followed by aerobic biodegradation, we examined the effect of polyacrylic acid (PAA)-coated nZVI (mean diameter = 12.5 nm) applied at 10 g nZVI kg−1 to Aroclor-1242 contaminated and uncontaminated soil over 28 days. nZVI had a limited effect on Aroclor congener profiles, but, either directly or indirectly via changes to soil physico-chemical conditions (pH, Eh), nZVI addition caused perturbation to soil bacterial community composition, and reduced the activity of chloroaromatic mineralizing microorganisms. We conclude that nZVI addition has the potential to inhibit microbial functions that could be important for PCB remediation strategies combining nZVI treatment and biodegradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insect pests that have a root-feeding larval stage often cause the most sustained damage to plants because their attrition remains largely unseen, preventing early diagnosis and treatment. Characterising movement and dispersal patterns of subterranean insects is inherently difficult due to the difficulty in observing their behaviour. Our understanding of dispersal and movement patterns of soil-dwelling insects is therefore limited compared to above ground insect pests and tends to focus on vertical movements within the soil profile or assessments of coarse movement patterns taken from soil core measurements in the field. The objective of this study was to assess how the dispersal behaviour of the clover root weevil (CRW), Sitona lepidus larvae was affected by differing proportions of host (clover) and non-host (grass) plants under different soil water contents (SWC). This was undertaken in experimental mini-swards that allowed us to control plant community structure and soil water content. CRW larval survival was not affected either by white clover content or planting pattern or SWC in either experiment; however, lower clover composition in the sward resulted in CRW larvae dispersing further from where they hatched. Because survival was the same regardless of clover density, the proportion of infested plants was highest in sward boxes with the fewest clover plants (i.e. the low host plant density). Thus, there is potential for clover plants over a larger area to be colonised when the clover content of the sward is low.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intensive land use reduces the diversity and abundance of many soil biota, with consequences for the processes that they govern and the ecosystem services that these processes underpin. Relationships between soil biota and ecosystem processes have mostly been found in laboratory experiments and rarely are found in the field. Here, we quantified, across four countries of contrasting climatic and soil conditions in Europe, how differences in soil food web composition resulting from land use systems (intensive wheat rotation, extensive rotation, and permanent grassland) influence the functioning of soils and the ecosystem services that they deliver. Intensive wheat rotation consistently reduced the biomass of all components of the soil food web across all countries. Soil food web properties strongly and consistently predicted processes of C and N cycling across land use systems and geographic locations, and they were a better predictor of these processes than land use. Processes of carbon loss increased with soil food web properties that correlated with soil C content, such as earthworm biomass and fungal/bacterial energy channel ratio, and were greatest in permanent grassland. In contrast, processes of N cycling were explained by soil food web properties independent of land use, such as arbuscular mycorrhizal fungi and bacterial channel biomass. Our quantification of the contribution of soil organisms to processes of C and N cycling across land use systems and geographic locations shows that soil biota need to be included in C and N cycling models and highlights the need to map and conserve soil biodiversity across the world.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Soil carbon (C) storage is a key ecosystem service. Soil C stocks play a vital role in soil fertility and climate regulation, but the factors that control these stocks at regional and national scales are unknown, particularly when their composition and stability are considered. As a result, their mapping relies on either unreliable proxy measures or laborious direct measurements. 2. Using data from an extensive national survey of English grasslands we show that surface soil (0-7cm) C stocks in size fractions of varying stability can be predicted at both regional and national scales from plant traits and simple measures of soil and climatic conditions. 3. Soil C stocks in the largest pool, of intermediate particle size (50-250 µm), were best explained by mean annual temperature (MAT), soil pH and soil moisture content. The second largest C pool, highly stable physically and biochemically protected particles (0.45-50 µm), was explained by soil pH and the community abundance weighted mean (CWM) leaf nitrogen (N) content, with the highest soil C stocks under N rich vegetation. The C stock in the small active fraction (250-4000 µm) was explained by a wide range of variables: MAT, mean annual precipitation, mean growing season length, soil pH and CWM specific leaf area; stocks were higher under vegetation with thick and/or dense leaves. 4. Testing the models describing these fractions against data from an independent English region indicated moderately strong correlation between predicted and actual values and no systematic bias, with the exception of the active fraction, for which predictions were inaccurate. 5. Synthesis and Applications: Validation indicates that readily available climate, soils and plant survey data can be effective in making local- to landscape-scale (1-100,000 km2) soil C stock predictions. Such predictions are a crucial component of effective management strategies to protect C stocks and enhance soil C sequestration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate archaeological and palaeoenvironmental reconstructions using phytoliths relies on the study of modern reference material. In eastern Acre, Brazil, we examined whether the five most common forest types present today were able to be differentiated by their soil phytolith assemblages, and thus provide analogues with which to compare palaeoecological assemblages from pre-Columbian earthwork sites in the region. Surface soils and vegetation from dense humid evergreen forest, dense humid evergreen forest with high palm abundance, palm forest, bamboo forest and fluvial forest were sampled and their phytoliths analysed. Relative phytolith frequencies were statistically compared using Principal Components Analyses (PCAs). We found the major differences in species composition to be well-represented by the phytolith assemblages as all forest types, apart from the two sub-types of dense humid evergreen forest, could be differentiated. Larger phytoliths from the sand fraction were found to be more ecologically diagnostic than those from the silt fraction. The surface soil phytolith assemblages we analysed can therefore be used as analogues to improve the accuracy of archaeological and palaeoecological reconstructions in the region.