23 resultados para Sodium acetate buffer pH 4.0
Resumo:
The extraction of americium(III), curium(III), and the lanthanides(III) from nitric acid by 6,6'- bis (5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-benzo[1,2,4]triazin-3-yl)-[2,2'] bipyridine (CyMe4-BTBP) has been studied. Since the extraction kinetics were slow, N,N'-dimethyl-N,N'-dioctyl-2-(2-hexyloxy-ethyl)malonamide (DMDOHEMA) was added as a phase transfer reagent. With a mixture of 0.01 M CyMe4-BTBP + 0.25 M DMDOHEMA in n -octanol, extraction equilibrium was reached within 5 min of mixing. At a nitric acid concentration of 1 M, an americium(III) distribution ratio of approx. 10 was achieved. Americium(III)/lanthanide(III) separation factors between 50 (dysprosium) and 1500 (lanthanum) were obtained. Whereas americium(III) and curium(III) were extracted as disolvates, the stoichiometries of the lanthanide(III) complexes were not identified unambiguously, owing to the presence of DMDOHEMA. In the absence of DMDOHEMA, both americium(III) and europium(III) were extracted as disolvates. Back-extraction with 0.1 M nitric acid was thermodynamically possible but rather slow. Using a buffered glycolate solution of pH=4, an americium(III) distribution ratio of 0.01 was obtained within 5 min of mixing. There was no evidence of degradation of the extractant, for example, the extraction performance of CyMe4-BTBP during hydrolylsis with 1 M nitric acid did not change over a two month contact.
Resumo:
Prebiotics are nondigestible food ingredients that encourage proliferation of selected groups of the colonic microflora, thereby altering the composition toward a more beneficial community. In the present study, the prebiotic potential of a novel galactooligosaccharide (GOS) mixture, produced by the activity of galactosyltransferases from Bifidobacterium bifidum 41171 on lactose, was assessed in vitro and in a parallel continuous randomized pig trial. In situ fluorescent hybridization with 16S rRNA-targeted probes was used to investigate changes in total bacteria, bifidobacteria, lactobacilli, bacteroides, and Clostridium histolyticum group in response to supplementing the novel GOS mixture. In a 3-stage continuous culture system, the bifidobacterial numbers for the first 2 vessels, which represented the proximal and traverse colon, increased (P < 0.05) after the addition of the oligosaccharide mixture. In addition, the oligosaccharide mixture strongly inhibited the attachment of enterohepatic Escherichia coli (P < 0.01) and Salmonella enterica serotype Typhimurium (P < 0.01) to HT29 cells. Addition of the novel mixture at 4% (wt:wt) to a commercial diet increased the density of bificlobacteria (P < 0.001) and the acetate concentration (P < 0.001), and decreased the pH (P < 0.001) compared with the control diet and the control diet supplemented with inulin, suggesting a great prebiotic potential for the novel oligosaccharide mixture. J. Nutr. 135: 1726-1731, 2005.
Resumo:
The recovery of lactoferrin and lactoperoxidase from sweet whey was studied using colloidal gas aphrons (CGAs), which are surfactant-stabilized microbubbles (10-100 mum). CGAs are generated by intense stirring (8000 rpm for 10 min) of the anionic surfactant AOT (sodium bis-2-ethylhexyl sulfosuccinate). A volume of CGAs (10-30 mL) is mixed with a given volume of whey (1 - 10 mL), and the mixture is allowed to separate into two phases: the aphron (top) phase and the liquid (bottom) phase. Each of the phases is analyzed by SDS-PAGE and surfactant colorimetric assay. A statistical experimental design has been developed to assess the effect of different process parameters including pH, ionic strength, the concentration of surfactant in the CGAs generating solution, the volume of CGAs and the volume of whey on separation efficiency. As expected pH, ionic strength and the volume of whey (i.e. the amount of total protein in the starting material) are the main factors influencing the partitioning of the Lf(.)Lp fraction into the aphron phase. Moreover, it has been demonstrated that best separation performance was achieved at pH = 4 and ionic strength = 0.1 mol/L i.e., with conditions favoring electrostatic interactions between target proteins and CGAs (recovery was 90% and the concentration of lactoferrin and lactoperoxidase in the aphron phase was 25 times higher than that in the liquid phase), whereas conditions favoring hydrophobic interactions (pH close to pI and high ionic strength) led to lower performance. However, under these conditions, as confirmed by zeta potential measurements, the adsorption of both target proteins and contaminant proteins is favored. Thus, low selectivity is achieved at all of the studied conditions. These results confirm the initial hypothesis that CGAs act as ion exchangers and that the selectivity of the process can be manipulated by changing main operating parameters such as type of surfactant, pH and ionic strength.
Resumo:
Abstract Purpose: The pH discrepancy between healthy and atopic dermatitis skin was identified as a site specific trigger for delivering hydrocortisone from microcapsules. Methods: Using Eudragit L100, a pH-responsive polymer which dissolves at pH 6, hydrocortisone-loaded microparticles were produced by oil-in-oil microencapsulation or spray drying. Release and permeation of hydrocortisone from microparticles alone or in gels was assessed and preliminary stability data was determined. Results: Drug release from microparticles was pH-dependent though the particles produced by spray drying also gave significant non-pH dependent burst release, resulting from their porous nature or from drug enrichment on the surface of these particles. This pH-responsive release was maintained upon incorporation of the oil-in-oil microparticles into Carbopol- and HPMC-based gel formulations. In-vitro studies showed 4 to 5-fold higher drug permeation through porcine skin from the gels at pH 7 compared to pH 5. Conclusions: Permeation studies showed that the oil-in-oil generated particles deliver essentially no drug at normal (intact) skin pH (5.0 – 5.5) but that delivery can be triggered and targeted to atopic dermatitis skin where the pH is elevated. The incorporation of these microparticles into Carbopol- and HPMC-based aqueous gel formulations demonstrated good stability and pH-responsive permeation into porcine skin.
Resumo:
The effect on the viscoelastic behaviour, of pressure-treating hydrated gumarabic samples (800 MPa) at different pH values (2.8, 4.2 and 8.0) was investigated, using controlled stress rheometry. The treated samples were analysed for their complex (G∗), storage (G′) and loss (G″) moduli as a function of frequency, using dynamic oscillatory testing. Significant changes in the rheologicalproperties were observed in both the pressurised gum solutions and in those previously buffered at pH 2.8. The gum, at its natural pH (4.25) and at alkaline pH (8.0), was enhanced by pressure treatment, but only for the already “good” quality gum samples. High-pressure treatment had substantial effects on the frequency-dependence of the moduli of both the pressurised and the pressurised/pH-treated solutions, with the latter being more pronounced, suggesting differing structures or changes in the overall degree of interaction of the gum systems after pressure treatment.
Resumo:
Objective: Many diseases, including atherosclerosis, involve chronic inflammation. The master transcription factor for inflammation is NF-κB. Inflammatory sites have a low extracellular pH. Our objective was to demonstrate the effect of pH on NF-κB activation and cytokine secretion. Methods: Mouse J774 macrophages or human THP-1 or monocyte-derived macrophages were incubated at pH 7.0–7.4 and inflammatory cytokine secretion and NF-κB activity were measured. Results: A pH of 7.0 greatly decreased pro-inflammatory cytokine secretion (TNF or IL-6) by J774 macrophages, but not THP-1 or human monocyte-derived macrophages. Upon stimulation of mouse macrophages, the levels of IκBα, which inhibits NF-κB, fell but low pH prevented its later increase, which normally restores the baseline activity of NF-κB, even though the levels of mRNA for IκBα were increased. pH 7.0 greatly increased and prolonged NF-κB binding to its consensus promoter sequence, especially the anti-inflammatory p50:p50 homodimers. Human p50 was overexpressed using adenovirus in THP-1 macrophages and monocyte-derived macrophages to see if it would confer pH sensitivity to NF-κB activity in human cells. Overexpression of p50 increased p50:p50 DNA-binding and in THP-1 macrophages inhibited considerably TNF and IL-6 secretion, but there was still no effect of pH on p50:p50 DNA binding or cytokine secretion. Conclusion: A modest decrease in pH can sometimes have marked effects on NF-κB activation and cytokine secretion and might be one reason to explain why mice normally develop less atherosclerosis than do humans.
Resumo:
The cornicle secretion of Myzus persicae reared on artificial diet only elicits an alarm response in plant-reared conspecifics after the young aphids have been transferred to plants for 7days. Acetate in the form of 0.32% sodium acetate has been added to the diet as an early step in synthesis of the alarm pheromone, (E)-β-farnesene (EBF). The cornicle secretion of diet-reared aphids then elicits an alarm response. However, there is no difference in internal EBF concentration between plant- and diet-reared aphids. Puncturing aphids, either plant- or diet-reared, with a pin shows that both can elicit an alarm response, whereas it is reduced by half with diet-reared individuals. Although there is no significant difference in the concentration of EBF produced, the total amount in diet-reared aphids is increased by acetate in the diet to a level similar to that in plant-reared individuals: the size of aphids reared on an acetate-supplemented diet is increased and comparable with the size of those that are plant-reared. Bioassays with a range of EBF concentrations show a high threshold for the alarm response. It is concluded that the different size of aphids reared on plants and standard diet results in them secreting, respectively, above and below the response threshold.
Effect of high-hydrostatic pressure and pH treatments on the emulsification properties of gum arabic
Resumo:
This study investigated the emulsification properties of the native gums and those treated at high pressure (800 MPa) both at their “natural” pH (4.49 and 4.58, respectively) and under “acidic and basic” pH (2.8 and 8.0) conditions. The emulsification behaviour of KLTA gum was found to be superior to that of the GCA gum. High pressure and pH treatment changed the emulsification properties of both gums. The acidic amino acids in gum arabic were shown to play an important role in their emulsification behaviour, and mechanisms of emulsification for the two gums were suggested to be different. The highly “branched” nature of the carbohydrate in GCA gum was also thought to be responsible for the “spreading” of droplet size distributions observed. Coomassie brilliant blue binding was used to indicate conformational changes in protein structure and Ellman’s assay was used to estimate any changes in levels of free thiols present.