18 resultados para Social evolution


Relevância:

30.00% 30.00%

Publicador:

Resumo:

To understand the evolution of well-organized social behaviour, we must first understand the mechanism by which collective behaviour establishes. In this study, the mechanisms of collective behaviour in a colony of social insects were studied in terms of the transition probability between active and inactive states, which is linked to mutual interactions. The active and inactive states of the social insects were statistically extracted from the velocity profiles. From the duration distributions of the two states, we found that 1) the durations of active and inactive states follow an exponential law, and 2) pair interactions increase the transition probability from inactive to active states. The regulation of the transition probability by paired interactions suggests that such interactions control the populations of active and inactive workers in the colony.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Humans’ unique cognitive abilities are usually attributed to a greatly expanded neocortex, which has been described as “the crowning achievement of evolution and the biological substrate of human mental prowess” [1]. The human cerebellum, however, contains four times more neurons than the neocortex [2] and is attracting increasing attention for its wide range of cognitive functions. Using a method for detecting evolutionary rate changes along the branches of phylogenetic trees, we show that the cerebellum underwent rapid size increase throughout the evolution of apes, including humans, expanding significantly faster than predicted by the change in neocortex size. As a result, humans and other apes deviated significantly from the general evolutionary trend for neocortex and cerebellum to change in tandem, having significantly larger cerebella relative to neocortex size than other anthropoid primates. These results suggest that cerebellar specialization was a far more important component of human brain evolution than hitherto recognized and that technical intelligence was likely to have been at least as important as social intelligence in human cognitive evolution. Given the role of the cerebellum in sensory-motor control and in learning complex action sequences, cerebellar specialization is likely to have underpinned the evolution of humans’ advanced technological capacities, which in turn may have been a preadaptation for language.