129 resultados para Single-process Models
Resumo:
Models play a vital role in supporting a range of activities in numerous domains. We rely on models to support the design, visualisation, analysis and representation of parts of the world around us, and as such significant research effort has been invested into numerous areas of modelling; including support for model semantics, dynamic states and behaviour, temporal data storage and visualisation. Whilst these efforts have increased our capabilities and allowed us to create increasingly powerful software-based models, the process of developing models, supporting tools and /or data structures remains difficult, expensive and error-prone. In this paper we define from literature the key factors in assessing a model’s quality and usefulness: semantic richness, support for dynamic states and object behaviour, temporal data storage and visualisation. We also identify a number of shortcomings in both existing modelling standards and model development processes and propose a unified generic process to guide users through the development of semantically rich, dynamic and temporal models.
Resumo:
Evaluating CCMs with the presented framework will increase our confidence in predictions of stratospheric ozone change.
Resumo:
We evaluate the ability of process based models to reproduce observed global mean sea-level change. When the models are forced by changes in natural and anthropogenic radiative forcing of the climate system and anthropogenic changes in land-water storage, the average of the modelled sea-level change for the periods 1900–2010, 1961–2010 and 1990–2010 is about 80%, 85% and 90% of the observed rise. The modelled rate of rise is over 1 mm yr−1 prior to 1950, decreases to less than 0.5 mm yr−1 in the 1960s, and increases to 3 mm yr−1 by 2000. When observed regional climate changes are used to drive a glacier model and an allowance is included for an ongoing adjustment of the ice sheets, the modelled sea-level rise is about 2 mm yr−1 prior to 1950, similar to the observations. The model results encompass the observed rise and the model average is within 20% of the observations, about 10% when the observed ice sheet contributions since 1993 are added, increasing confidence in future projections for the 21st century. The increased rate of rise since 1990 is not part of a natural cycle but a direct response to increased radiative forcing (both anthropogenic and natural), which will continue to grow with ongoing greenhouse gas emissions
Resumo:
Purpose – Multinationals have always needed an operating model that works – an effective plan for executing their most important activities at the right levels of their organization, whether globally, regionally or locally. The choices involved in these decisions have never been obvious, since international firms have consistently faced trade‐offs between tailoring approaches for diverse local markets and leveraging their global scale. This paper seeks a more in‐depth understanding of how successful firms manage the global‐local trade‐off in a multipolar world. Design methodology/approach – This paper utilizes a case study approach based on in‐depth senior executive interviews at several telecommunications companies including Tata Communications. The interviews probed the operating models of the companies we studied, focusing on their approaches to organization structure, management processes, management technologies (including information technology (IT)) and people/talent. Findings – Successful companies balance global‐local trade‐offs by taking a flexible and tailored approach toward their operating‐model decisions. The paper finds that successful companies, including Tata Communications, which is profiled in‐depth, are breaking up the global‐local conundrum into a set of more manageable strategic problems – what the authors call “pressure points” – which they identify by assessing their most important activities and capabilities and determining the global and local challenges associated with them. They then design a different operating model solution for each pressure point, and repeat this process as new strategic developments emerge. By doing so they not only enhance their agility, but they also continually calibrate that crucial balance between global efficiency and local responsiveness. Originality/value – This paper takes a unique approach to operating model design, finding that an operating model is better viewed as several distinct solutions to specific “pressure points” rather than a single and inflexible model that addresses all challenges equally. Now more than ever, developing the right operating model is at the top of multinational executives' priorities, and an area of increasing concern; the international business arena has changed drastically, requiring thoughtfulness and flexibility instead of standard formulas for operating internationally. Old adages like “think global and act local” no longer provide the universal guidance they once seemed to.
Resumo:
A new technique is described for the analysis of cloud-resolving model simulations, which allows one to investigate the statistics of the lifecycles of cumulus clouds. Clouds are tracked from timestep-to-timestep within the model run. This allows for a very simple method of tracking, but one which is both comprehensive and robust. An approach for handling cloud splits and mergers is described which allows clouds with simple and complicated time histories to be compared within a single framework. This is found to be important for the analysis of an idealized simulation of radiative-convective equilibrium, in which the moist, buoyant, updrafts (i.e., the convective cores) were tracked. Around half of all such cores were subject to splits and mergers during their lifecycles. For cores without any such events, the average lifetime is 30min, but events can lengthen the typical lifetime considerably.
Resumo:
We present an application of birth-and-death processes on configuration spaces to a generalized mutation4 selection balance model. The model describes the aging of population as a process of accumulation of mu5 tations in a genotype. A rigorous treatment demands that mutations correspond to points in abstract spaces. 6 Our model describes an infinite-population, infinite-sites model in continuum. The dynamical equation which 7 describes the system, is of Kimura-Maruyama type. The problem can be posed in terms of evolution of states 8 (differential equation) or, equivalently, represented in terms of Feynman-Kac formula. The questions of interest 9 are the existence of a solution, its asymptotic behavior, and properties of the limiting state. In the non-epistatic 10 case the problem was posed and solved in [Steinsaltz D., Evans S.N., Wachter K.W., Adv. Appl. Math., 2005, 11 35(1)]. In our model we consider a topological space X as the space of positions of mutations and the influence of epistatic potentials
Resumo:
A traditional method of validating the performance of a flood model when remotely sensed data of the flood extent are available is to compare the predicted flood extent to that observed. The performance measure employed often uses areal pattern-matching to assess the degree to which the two extents overlap. Recently, remote sensing of flood extents using synthetic aperture radar (SAR) and airborne scanning laser altimetry (LIDAR) has made more straightforward the synoptic measurement of water surface elevations along flood waterlines, and this has emphasised the possibility of using alternative performance measures based on height. This paper considers the advantages that can accrue from using a performance measure based on waterline elevations rather than one based on areal patterns of wet and dry pixels. The two measures were compared for their ability to estimate flood inundation uncertainty maps from a set of model runs carried out to span the acceptable model parameter range in a GLUE-based analysis. A 1 in 5-year flood on the Thames in 1992 was used as a test event. As is typical for UK floods, only a single SAR image of observed flood extent was available for model calibration and validation. A simple implementation of a two-dimensional flood model (LISFLOOD-FP) was used to generate model flood extents for comparison with that observed. The performance measure based on height differences of corresponding points along the observed and modelled waterlines was found to be significantly more sensitive to the channel friction parameter than the measure based on areal patterns of flood extent. The former was able to restrict the parameter range of acceptable model runs and hence reduce the number of runs necessary to generate an inundation uncertainty map. A result of this was that there was less uncertainty in the final flood risk map. The uncertainty analysis included the effects of uncertainties in the observed flood extent as well as in model parameters. The height-based measure was found to be more sensitive when increased heighting accuracy was achieved by requiring that observed waterline heights varied slowly along the reach. The technique allows for the decomposition of the reach into sections, with different effective channel friction parameters used in different sections, which in this case resulted in lower r.m.s. height differences between observed and modelled waterlines than those achieved by runs using a single friction parameter for the whole reach. However, a validation of the modelled inundation uncertainty using the calibration event showed a significant difference between the uncertainty map and the observed flood extent. While this was true for both measures, the difference was especially significant for the height-based one. This is likely to be due to the conceptually simple flood inundation model and the coarse application resolution employed in this case. The increased sensitivity of the height-based measure may lead to an increased onus being placed on the model developer in the production of a valid model
Resumo:
Most parameterizations for precipitating convection in use today are bulk schemes, in which an ensemble of cumulus elements with different properties is modelled as a single, representative entraining-detraining plume. We review the underpinning mathematical model for such parameterizations, in particular by comparing it with spectral models in which elements are not combined into the representative plume. The chief merit of a bulk model is that the representative plume can be described by an equation set with the same structure as that which describes each element in a spectral model. The equivalence relies on an ansatz for detrained condensate introduced by Yanai et al. (1973) and on a simplified microphysics. There are also conceptual differences in the closure of bulk and spectral parameterizations. In particular, we show that the convective quasi-equilibrium closure of Arakawa and Schubert (1974) for spectral parameterizations cannot be carried over to a bulk parameterization in a straightforward way. Quasi-equilibrium of the cloud work function assumes a timescale separation between a slow forcing process and a rapid convective response. But, for the natural bulk analogue to the cloud-work function (the dilute CAPE), the relevant forcing is characterised by a different timescale, and so its quasi-equilibrium entails a different physical constraint. Closures of bulk parameterization that use the non-entraining parcel value of CAPE do not suffer from this timescale issue. However, the Yanai et al. (1973) ansatz must be invoked as a necessary ingredient of those closures.
Resumo:
Despite the many models developed for phosphorus concentration prediction at differing spatial and temporal scales, there has been little effort to quantify uncertainty in their predictions. Model prediction uncertainty quantification is desirable, for informed decision-making in river-systems management. An uncertainty analysis of the process-based model, integrated catchment model of phosphorus (INCA-P), within the generalised likelihood uncertainty estimation (GLUE) framework is presented. The framework is applied to the Lugg catchment (1,077 km2), a River Wye tributary, on the England–Wales border. Daily discharge and monthly phosphorus (total reactive and total), for a limited number of reaches, are used to initially assess uncertainty and sensitivity of 44 model parameters, identified as being most important for discharge and phosphorus predictions. This study demonstrates that parameter homogeneity assumptions (spatial heterogeneity is treated as land use type fractional areas) can achieve higher model fits, than a previous expertly calibrated parameter set. The model is capable of reproducing the hydrology, but a threshold Nash-Sutcliffe co-efficient of determination (E or R 2) of 0.3 is not achieved when simulating observed total phosphorus (TP) data in the upland reaches or total reactive phosphorus (TRP) in any reach. Despite this, the model reproduces the general dynamics of TP and TRP, in point source dominated lower reaches. This paper discusses why this application of INCA-P fails to find any parameter sets, which simultaneously describe all observed data acceptably. The discussion focuses on uncertainty of readily available input data, and whether such process-based models should be used when there isn’t sufficient data to support the many parameters.
Resumo:
Applications such as neuroscience, telecommunication, online social networking, transport and retail trading give rise to connectivity patterns that change over time. In this work, we address the resulting need for network models and computational algorithms that deal with dynamic links. We introduce a new class of evolving range-dependent random graphs that gives a tractable framework for modelling and simulation. We develop a spectral algorithm for calibrating a set of edge ranges from a sequence of network snapshots and give a proof of principle illustration on some neuroscience data. We also show how the model can be used computationally and analytically to investigate the scenario where an evolutionary process, such as an epidemic, takes place on an evolving network. This allows us to study the cumulative effect of two distinct types of dynamics.
Resumo:
Land use and land cover changes in the Brazilian Amazon have major implications for regional and global carbon (C) cycling. Cattle pasture represents the largest single use (about 70%) of this once-forested land in most of the region. The main objective of this study was to evaluate the accuracy of the RothC and Century models at estimating soil organic C (SOC) changes under forest-to-pasture conditions in the Brazilian Amazon. We used data from 11 site-specific 'forest to pasture' chronosequences with the Century Ecosystem Model (Century 4.0) and the Rothamsted C Model (RothC 26.3). The models predicted that forest clearance and conversion to well managed pasture would cause an initial decline in soil C stocks (0-20 cm depth), followed in the majority of cases by a slow rise to levels exceeding those under native forest. One exception to this pattern was a chronosequence in Suia-Missu, which is under degraded pasture. In three other chronosequences the recovery of soil C under pasture appeared to be only to about the same level as under the previous forest. Statistical tests were applied to determine levels of agreement between simulated SOC stocks and observed stocks for all the sites within the 11 chronosequences. The models also provided reasonable estimates (coefficient of correlation = 0.8) of the microbial biomass C in the 0-10 cm soil layer for three chronosequences, when compared with available measured data. The Century model adequately predicted the magnitude and the overall trend in delta C-13 for the six chronosequences where measured 813 C data were available. This study gave independent tests of model performance, as no adjustments were made to the models to generate outputs. Our results suggest that modelling techniques can be successfully used for monitoring soil C stocks and changes, allowing both the identification of current patterns in the soil and the projection of future conditions. Results were used and discussed not only to evaluate soil C dynamics but also to indicate soil C sequestration opportunities for the Brazilian Amazon region. Moreover, modelling studies in these 'forest to pasture' systems have important applications, for example, the calculation of CO, emissions from land use change in national greenhouse gas inventories. (0 2007 Elsevier B.V. All rights reserved.
Resumo:
Bloom-forming and toxin-producing cyanobacteria remain a persistent nuisance across the world. Modelling of cyanobacteria in freshwaters is an important tool for understanding their population dynamics and predicting bloom occurrence in lakes and rivers. In this paper existing key models of cyanobacteria are reviewed, evaluated and classified. Two major groups emerge: deterministic mathematical and artificial neural network models. Mathematical models can be further subcategorized into those models concerned with impounded water bodies and those concerned with rivers. Most existing models focus on a single aspect such as the growth of transport mechanisms, but there are a few models which couple both.
Resumo:
Partnerships are complex, diverse and subtle relationships, the nature of which changes with time, but they are vital for the functioning of the development chain. This paper reviews the meaning of partnership between development institutions as well as some of the main approaches taken to analyse the relationships. The latter typically revolve around analyses based on power, discourse, interdependence and functionality. The paper makes the case for taking a multianalytical approach to understanding partnership but points out three problem areas: identifying acceptable/unacceptable trade-offs between characteristics of partnership, the analysis of multicomponent partnerships (where one partner has a number of other partners) and the analysis of long-term partnership. The latter is especially problematic for long-term partnerships between donors and field agencies that share an underlying commitment based on religious beliefs. These problems with current methods of analysing partnership are highlighted by focusing upon the Catholic Church-based development chain, linking donors in the North (Europe) and their field partners in the South (Abuja Ecclesiastical Province, Nigeria). It explores a narrated history of a relationship with a single donor spanning 35 years from the perspective of one partner (the field agency).