79 resultados para Shape Optimization
Resumo:
Objectives. This study was designed to evaluate a new brief cognitive-behavioural intervention to reduce concerns about body shape. Design. Women with high levels of shape concern (N = 50) were randomly assigned to cognitive behaviour therapy or applied relaxation (AR). Baseline assessments were made and then women received their treatment immediately after this assessment, ('immediate' treatment) or 5 weeks after this assessment, during which time no treatment was given ('delayed' treatment, DT). Methods. Shape concern and related cognitions and emotions were assessed at baseline, post-treatment and at 4 and 12 week follow-up (FU). Results. Immediate treatment was superior to DT in reducing shape concerns, and this difference was maintained at 4 week FU. The cognitive behavioural intervention was more effective than AR in changing shape concern and this difference was largely maintained for 3 months. Conclusions. These initial findings support the further investigation of this brief intervention.
Resumo:
Selecting a stimulus as the target for a goal-directed movement involves inhibiting other competing possible responses. Inhibition has generally proved hard to study behaviorally, because it results in no measurable output. The effect of distractors on the shape of oculomotor and manual trajectories provide evidence of such inhibition. Individual saccades may deviate initially either towards, or away from, a competing distractor - the direction and extent of this deviation depends upon saccade latency, target predictability and the target to distractor separation. The experiment reported here used these effects to show how inhibition of distractor locations develops over time. Distractors could be presented at various distances from unpredictable and predictable targets in two separate experiments. The deviation of saccade trajectories was compared between trials with and without distractors. Inhibition was measured by saccade trajectory deviation. Inhibition was found to increase as the distractor distance from target decreased but was found to increase with saccade latency at all distractor distances (albeit to different peaks). Surprisingly, no differences were found between unpredictable and predictable targets perhaps because our saccade latencies were generally long (similar to 260-280 ms.). We conclude that oculomotor inhibition of saccades to possible target objects involves the same mechanisms for all distractor distances and target types. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Grouping by luminance and shape similarity has previously been demonstrated in neonates and at 4 months, respectively. By contrast, grouping by proximity has hitherto not been investigated in infancy. This is also the first study to chart the developmental emergence of perceptual grouping longitudinally. Sixty-one infants were presented with a matrix of local stimuli grouped horizontally or vertically by luminance, shape or proximity at 2, 4, and 6 months. Infants were exposed to each set of stimuli for three presentation durations. Grouping was demonstrated for luminance similarity at the earliest testing age, 2 months, by shape similarity at 4 months, but was not observed for grouping by proximity. Grouping by shape similarity showed a distinctive pattern of grouping ability across exposure durations, which reflected familiarity preferences followed by novelty preferences. This remained stable across age. No link was found between the emergence of perceptual grouping ability and the exposure duration required to elicit grouping. We conclude by stressing the importance of longitudinal studies of infant development in furthering our understanding of human cognition, rather than relying on assumptions from the adult endstate.
Resumo:
This paper deals with the design of optimal multiple gravity assist trajectories with deep space manoeuvres. A pruning method which considers the sequential nature of the problem is presented. The method locates feasible vectors using local optimization and applies a clustering algorithm to find reduced bounding boxes which can be used in a subsequent optimization step. Since multiple local minima remain within the pruned search space, the use of a global optimization method, such as Differential Evolution, is suggested for finding solutions which are likely to be close to the global optimum. Two case studies are presented.
Resumo:
Whilst radial basis function (RBF) equalizers have been employed to combat the linear and nonlinear distortions in modern communication systems, most of them do not take into account the equalizer's generalization capability. In this paper, it is firstly proposed that the. model's generalization capability can be improved by treating the modelling problem as a multi-objective optimization (MOO) problem, with each objective based on one of several training sets. Then, as a modelling application, a new RBF equalizer learning scheme is introduced based on the directional evolutionary MOO (EMOO). Directional EMOO improves the computational efficiency of conventional EMOO, which has been widely applied in solving MOO problems, by explicitly making use of the directional information. Computer simulation demonstrates that the new scheme can be used to derive RBF equalizers with good performance not only on explaining the training samples but on predicting the unseen samples.
Resumo:
In this paper, a fuzzy Markov random field (FMRF) model is used to segment land-objects into free, grass, building, and road regions by fusing remotely, sensed LIDAR data and co-registered color bands, i.e. scanned aerial color (RGB) photo and near infra-red (NIR) photo. An FMRF model is defined as a Markov random field (MRF) model in a fuzzy domain. Three optimization algorithms in the FMRF model, i.e. Lagrange multiplier (LM), iterated conditional mode (ICM), and simulated annealing (SA), are compared with respect to the computational cost and segmentation accuracy. The results have shown that the FMRF model-based ICM algorithm balances the computational cost and segmentation accuracy in land-cover segmentation from LIDAR data and co-registered bands.
Resumo:
Purpose - The purpose of this paper is to identify the most popular techniques used to rank a web page highly in Google. Design/methodology/approach - The paper presents the results of a study into 50 highly optimized web pages that were created as part of a Search Engine Optimization competition. The study focuses on the most popular techniques that were used to rank highest in this competition, and includes an analysis on the use of PageRank, number of pages, number of in-links, domain age and the use of third party sites such as directories and social bookmarking sites. A separate study was made into 50 non-optimized web pages for comparison. Findings - The paper provides insight into the techniques that successful Search Engine Optimizers use to ensure a page ranks highly in Google. Recognizes the importance of PageRank and links as well as directories and social bookmarking sites. Research limitations/implications - Only the top 50 web sites for a specific query were analyzed. Analysing more web sites and comparing with similar studies in different competition would provide more concrete results. Practical implications - The paper offers a revealing insight into the techniques used by industry experts to rank highly in Google, and the success or other-wise of those techniques. Originality/value - This paper fulfils an identified need for web sites and e-commerce sites keen to attract a wider web audience.
Resumo:
Most active-contour methods are based either on maximizing the image contrast under the contour or on minimizing the sum of squared distances between contour and image 'features'. The Marginalized Likelihood Ratio (MLR) contour model uses a contrast-based measure of goodness-of-fit for the contour and thus falls into the first class. The point of departure from previous models consists in marginalizing this contrast measure over unmodelled shape variations. The MLR model naturally leads to the EM Contour algorithm, in which pose optimization is carried out by iterated least-squares, as in feature-based contour methods. The difference with respect to other feature-based algorithms is that the EM Contour algorithm minimizes squared distances from Bayes least-squares (marginalized) estimates of contour locations, rather than from 'strongest features' in the neighborhood of the contour. Within the framework of the MLR model, alternatives to the EM algorithm can also be derived: one of these alternatives is the empirical-information method. Tracking experiments demonstrate the robustness of pose estimates given by the MLR model, and support the theoretical expectation that the EM Contour algorithm is more robust than either feature-based methods or the empirical-information method. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the design, implementation and testing of an intelligent knowledge-based supervisory control (IKBSC) system for a hot rolling mill process. A novel architecture is used to integrate an expert system with an existing supervisory control system and a new optimization methodology for scheduling the soaking pits in which the material is heated prior to rolling. The resulting IKBSC system was applied to an aluminium hot rolling mill process to improve the shape quality of low-gauge plate and to optimise the use of the soaking pits to reduce energy consumption. The results from the trials demonstrate the advantages to be gained from the IKBSC system that integrates knowledge contained within data, plant and human resources with existing model-based systems. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, a new equalizer learning scheme is introduced based on the algorithm of the directional evolutionary multi-objective optimization (EMOO). Whilst nonlinear channel equalizers such as the radial basis function (RBF) equalizers have been widely studied to combat the linear and nonlinear distortions in the modern communication systems, most of them do not take into account the equalizers' generalization capabilities. In this paper, equalizers are designed aiming at improving their generalization capabilities. It is proposed that this objective can be achieved by treating the equalizer design problem as a multi-objective optimization (MOO) problem, with each objective based on one of several training sets, followed by deriving equalizers with good capabilities of recovering the signals for all the training sets. Conventional EMOO which is widely applied in the MOO problems suffers from disadvantages such as slow convergence speed. Directional EMOO improves the computational efficiency of the conventional EMOO by explicitly making use of the directional information. The new equalizer learning scheme based on the directional EMOO is applied to the RBF equalizer design. Computer simulation demonstrates that the new scheme can be used to derive RBF equalizers with good generalization capabilities, i.e., good performance on predicting the unseen samples.
Resumo:
The success of Matrix-assisted laser desorption / ionisation (MALDI) in fields such as proteomics has partially but not exclusively been due to the development of improved data acquisition and sample preparation techniques. This has been required to overcome some of the short comings of the commonly used solid-state MALDI matrices such as - cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB). Solid state matrices form crystalline samples with highly inhomogeneous topography and morphology which results in large fluctuations in analyte signal intensity from spot to spot and positions within the spot. This means that efficient tuning of the mass spectrometer can be impeded and the use of MALDI MS for quantitative measurements is severely impeded. Recently new MALDI liquid matrices have been introduced which promise to be an effective alternative to crystalline matrices. Generally the liquid matrices comprise either ionic liquid matrices (ILMs) or a usually viscous liquid matrix which is doped with a UV lightabsorbing chromophore [1-3]. The advantages are that the droplet surface is smooth and relatively uniform with the analyte homogeneously distributed within. They have the ability to replenish a sampling position between shots negating the need to search for sample hot-spots. Also the liquid nature of the matrix allows for the use of additional additives to change the environment to which the analyte is added.
Resumo:
We propose a unified data modeling approach that is equally applicable to supervised regression and classification applications, as well as to unsupervised probability density function estimation. A particle swarm optimization (PSO) aided orthogonal forward regression (OFR) algorithm based on leave-one-out (LOO) criteria is developed to construct parsimonious radial basis function (RBF) networks with tunable nodes. Each stage of the construction process determines the center vector and diagonal covariance matrix of one RBF node by minimizing the LOO statistics. For regression applications, the LOO criterion is chosen to be the LOO mean square error, while the LOO misclassification rate is adopted in two-class classification applications. By adopting the Parzen window estimate as the desired response, the unsupervised density estimation problem is transformed into a constrained regression problem. This PSO aided OFR algorithm for tunable-node RBF networks is capable of constructing very parsimonious RBF models that generalize well, and our analysis and experimental results demonstrate that the algorithm is computationally even simpler than the efficient regularization assisted orthogonal least square algorithm based on LOO criteria for selecting fixed-node RBF models. Another significant advantage of the proposed learning procedure is that it does not have learning hyperparameters that have to be tuned using costly cross validation. The effectiveness of the proposed PSO aided OFR construction procedure is illustrated using several examples taken from regression and classification, as well as density estimation applications.