31 resultados para Sewage irrigation
Resumo:
Regulated irrigation has the potential to improve crop quality in woody ornamentals by reducing excessive vigour and promoting a more compact habit. This research aimed to compare the effectiveness and the mode of action of two techniques, regulated deficit irrigation (RDI) and partial root drying (PRD), when applied to container-grown ornamentals through drip irrigation. Results showed that RDI and PRD reduced growth in Cotinus coggygria 'Royal Purple', but in Forsythia x intermedia 'Lynwood', significant reductions were recorded only with RDI. Physiological measurements in Forsythia indicated that reductions in stomatal conductance (g(s)) occurred in both treatments, but those in the RDI tended to be more persistent. Reduced g(s) in PRD was consistent with the concept that chemical signals from the root can regulate stomatal aperture alone; however, the data also suggested that optimising the growth reduction required a moderate degree of shoot water deficit (i.e. a hydraulic signal to be imposed). As RDI was associated with tissue water deficit, it was used in a second experiment to determine the potential of this technique to precondition container-grown plants against subsequent drought stress (e.g. during retail stages or after planting out). Speed of acclimation would be important in a commercial context, and the results demonstrated that both slow and rapid imposition of RDI enabled Forsythia plants to acclimate against later drought events. This article discusses the potential to both improve ornamental plant quality and enhance tolerance to subsequent adverse conditions through controlled, regulated irrigation.
Resumo:
Improving plant quality and the uniformity of a crop are major objectives for growers of ornamental nursery stock. The potential to control excess vigour and to improve quality through regulated deficit irrigation (RDI) was investigated using a range of woody ornamental species. RDI regimes reduced vegetative growth consistently across different species and growing seasons. Plants adapted to reduced water supplies primarily via stomatal control, but also by osmotic adjustment when grown under the most severe RDI regimes. Only plants exposed to <= 25% of potential evapo-transpiration demonstrated any evidence of leaf injury, and the extent was slight. Growth inhibition increased as the severity of RDI increased. Improvements in quality were attained through a combination of shorter internodes and final shoot lengths, yet the number of 'formative' primary shoots remained unaffected. Compact, well-branched plants could be formed without a requirement for mid-season pruning. In addition to severity, the timing of RDI also influenced growth responses. Applying 50% ETp for 8 weeks during July-August resulted in the formation of good quality plants, which retained their shape until the following Spring. Re-positioning irrigation drippers within the pots of well-watered plants, in an attempt to induce a partial root drying (PRD) treatment, reduced growth, but not significantly. The adoption of irrigation scheduling, based on 50-100% ETp, has the potential to improve commercial crop quality across a range of ornamental species.
Resumo:
The aim of this research was to determine whether shoot growth could be regulated and plant quality improved through two controlled irrigation techniques: Regulated Deficit Irrigation (RDI) or Partial Root Drying (PRD). An additional benefit of such techniques is that they would also improve the efficiency of irrigation application and reduce the volume of water used on commercial nurseries. Results from two ornamental woody plant species (Cotinus and Forsythia) demonstrated that plant quality could be significantly improved when RDI was applied at ≤ 60% of potential evapo-transpiration (ETp). Stomatal closure and reduced leaf and internode growth rates were associated with both the RDI and PRD techniques, but reduced leaf water potential was only recorded in the RDI system. Changes in xylem sap pH and ABA concentrations were correlated with changes in shoot physiology, and thought to be generated by those roots exposed to drying soil. By adopting such controlled irrigation systems on commercial holdings it is estimated that water consumption could be reduced by 50 to 90%.
Resumo:
The reuse of treated wastewater (reclaimed water) for irrigation is a valuable strategy to maximise available water resources, but the often marginal quality of the water can present agricultural challenges. Semi-structured interviews were held with Jordanian farmers to explore how they perceive the quality of reclaimed water. Of the 11 farmers interviewed who irrigate with reclaimed water directly near treatment plants, 10 described reclaimed water either positively or neutrally. In contrast, 27 of the 39 farmers who use reclaimed water indirectly, after it is blended with fresh water, viewed the resource negatively, although 23 of the indirect reuse farmers also recognised the nutrient benefits. Farmer perception of reclaimed water may be a function of its quality, but consideration should also be given to farmers’ capacity to manage the agricultural challenges associated with reclaimed water (salinity, irrigation system damage, marketing of produce), their actual and perceived capacity to control where and when reclaimed water is used, and their capacity to influence the quality of the water delivered to the farm.
Resumo:
The reuse of treated wastewater (reclaimed water) is particularly well suited for irrigated agriculture as it often contains significant quantities of plant essential nutrients. This work has shown that reclaimed water in Jordan can have adequate concentrations of potassium, phosphate, sulphate and magnesium to meet all or part of the crop’s requirements. To fully benefit from these inputs farmers must have an awareness of the water quality and reduce the application of chemical fertilisers accordingly. Interviews with farmers have shown that 75 per cent of farmers indirectly using reclaimed water are aware of the nutrients. Farmers’ decision making as to the application of chemical fertilisers appears to be influenced by a range of factors which include the type of crops being cultivated, the provision of training on nutrient management and the availability of information on the nutrient content of the reclaimed water.
Resumo:
With the increasing frequency and magnitude of warmer days during the summer in the UK, bedding plants which were a traditional part of the urban green landscape are perceived as unsustainable and water-demanding. During recent summers when bans on irrigation have been imposed, use and sales of bedding plants have dropped dramatically having a negative financial impact on the nursery industry. Retaining bedding species as a feature in public and even private spaces in future may be conditional on them being managed in a manner that minimises their water use. Using Petunia x hybrida ‘Hurrah White’ we aimed to discover which irrigation approach was the most efficient for maintaining plants’ ornamental quality (flower numbers, size and longevity), shoot and root growth under water deficit and periods of complete water withdrawal. Plants were grown from plugs for 51 days in wooden rhizotrons (0.35 m (h) x 0.1 m (w) x 0.065 m (d)); the rhizotrons’ front comprised clear Perspex which enabled us to monitor root growth closely. Irrigation treatments were: 1. watering with the amount which constitutes 50% of container capacity by conventional surface drip-irrigation (‘50% TOP’); 2. 50% as sub-irrigation at 10 cm depth (‘50% SUB’); 3. ‘split’ irrigation: 25% as surface drip- and 25% as sub-irrigation at 15 cm depth (‘25/25 SPLIT’); 4. 25% as conventional surface drip-irrigation (‘25% TOP’). Plants were irrigated daily at 18:00 apart from days 34-36 (inclusive) when water was withdrawn for all the treatments. Plants in ‘50% SUB’ had the most flowers and their size was comparable to that of ‘50% TOP’. Differences between treatments in other ‘quality’ parameters (height, shoot number) were biologically small. There was less root growth at deeper soil surface levels for ‘50% TOP’ which indicated that irrigation methods like ‘50% SUB’ and ‘25/25 SPLIT’ and stronger water deficits encouraged deeper root growth. It is suggested that sub-irrigation at 10 cm depth with water amounts of 50% container capacity would result in the most root growth with the maximum flowering for Petunia. Leaf stomatal conductance appeared to be most sensitive to the changes in substrate moisture content in the deepest part of the soil profile, where most roots were situated.
Resumo:
In this paper are identified several factors which affect a potential user's willingness to use recycled water for agricultural irrigation. This study is based on the results of a survey carried out among farmers in the island of Crete, Greece. It was found that a higher level of income and education are positively correlated with a respondent's willingness to use recycled water. Income and education are also positively correlated with a potential user's sensitivity to information on the advantages of using non-conventional water resources. Overall, extra information on the advantages of recycled water has a statistically significant impact on reported degrees of willingness to use recycled water.
Resumo:
Irrigation is a major husbandry tool, vital for world food production and security. The purpose of this review is twofold:- firstly drawing attention to the beneficial and deleterious aspects of irrigation resulting from interactions with the microbial world; secondly, forming a basis for encouraging further research and development. Irrigation is for example, a valuable component in the control of some soil borne pathogens such as Streptomyces scabies, the cause of potato common scab and Fusarium cubense, a cause of banana wilt. By contrast, applying irrigation encourages some foliar pathogens and factors such as splash dispersal of propagules and the retention of leaf wetness are important elements in the successful establishment of disease foci. Irrigation applied at low levels in the canopy directly towards the stem bases and root zones of plants also provides means encouraging disease development. Irrigation also offers means for the direct spread of microbes such as water borne moulds, Oomycetes, and plasmodial pathogens coming from populations present in the water supply. The presence of plant disease causing microbes in sources of irrigation has been associated with outbreaks of diseases such as clubroot (Plasmodiophora brassicae). Irrigation can be utilised as a means for applying agrochemicals, fungigation. The developing technologies of water restriction and root zone drying also have an impact on the success of disease causing organisms. This is an emerging technology and its interactions with benign and pathogenic microbes require consideration.
Resumo:
The behaviour and fate of macronutrients and pollutants in sewage sludge applied to the land are affected by the chemical composition of the sludge organic matter, which in turn is influenced by both sewage source and by sewage treatment processes. In this study, 13C nuclear magnetic resonance (NMR) spectroscopy was used to characterise the organic matter of sludges collected at three different points along the treatment stream of a municipal sewage works with a domestic catchment. Sludge at the first point, an undigested liquid (UL) sludge, had a substantially different composition to the anaerobically digested (AD) and dewatered sludge cake (DC) materials, which were similar to each other. In particular, the UL sludge contained more alkyl C than the AD or DC sludges. All three sludges were found to contain mobile alkyl C that is poorly observed using the cross polarisation (CP) technique, necessitating the use of the less sensitive, but more quantitatively reliable direct polarisation (DP) technique to obtain accurate distributions of C types.
Resumo:
The effect of different stages of sewage sludge treatment on phosphorus (P) dynamics in amended soils was determined using samples of undigested liquid (UL), anaerobically digested liquid (AD) and dewatered anaerobically digested (DC) sludge. Sludges were taken from three points in the same treatment stream and applied to a sandy loam soil in field-based mesocosms at 4, 8 and 16t ha−1 dry solids. Mesocosms were sown with perennial ryegrass (Lolium perenne cv. Melle), and the sward was harvested after 35 and 70 days to determine yield and foliar P concentration. Soils were also sampled during this period to measure P transformations and the activities of acid phosphomonoesterase and phosphodiesterase. Data show that the AD amended soils had the greatest plant-available and foliar P content up to the second harvest, but the UL amended soils had the greatest enzyme activity. Characterisation of control and 16t ha−1 soils and sludge using solution 31P nuclear magnetic resonance (NMR) spectroscopy after NaOH–EDTA extraction revealed that P was predominantly in the inorganic pool in all three sludge samples, with the highest proportion (of the total extracted P) as inorganic P in the anaerobically digested liquid sludge. After sludge incorporation, P was immobilised to organic species. The majority of organic P was in monoester-P forms, while the remainder of organic P (diester P and phosphonate P) was more susceptible to transformations through time and showed variation with sludge type. These results show that application of sewage sludge at rates as low as 4t ha−1 can have a significant nutritional benefit to ryegrass over an initial 35-day growth and subsequent 35-day re-growth periods. Differences in P transformation, and hence nutritional benefit, between sludge types were evident throughout the experiment. Thus, differences in sludge treatment process alter the edaphic mineralisation characteristics of biosolids derived from the same source material.
Resumo:
An agricultural soil was amended with sewage sludge at rates equivalent to 0, 10 and 30 t (dry solids) ha−1 and the subsequent transfer of zinc and cadmium through a soil–plant–arthropod system was investigated. Zinc concentration in soil, wheat and aphids increased significantly with sludge amendment rate. Zinc was biomagnified during transfer along the pathway, resulting in concentrations in the aphids four times greater than in the soil. Cadmium concentration in the soil was also significantly elevated by the addition of sludge, but there was no significant difference in cadmium concentration in the shoots of wheat plants. Cadmium concentration in aphids followed the pattern found in plants, but again, differences between treatments were not significant. Aphids collected from the plants were subsequently fed to fourth instar Coccinella septempunctata. Consumption of these aphids did not result in significant differences between treatments in the body burden of newly emerged adult C. septempunctata for either metal. Sequestration of cadmium in the pupal exuviae had a greater effect on the body burden of newly emerged adult ladybirds than for zinc. Results are discussed in relation to possible risks posed by the transfer of trace metals via the soil–plant–arthropod system to predatory arthropods.
Resumo:
Three sludge types from the same treatment stream (undigested liquid, anaerobically digested liquid and dewatered, anaerobically digested cake) were used in a field based tub study. Amendments (4, 8, and 16 Mg dry solid (ds)ha(-1)) were incorporated into the upper 15 cm of a sandy loam soil prior to sowing with rye-grass (Lolium perenne L.). Nitrogen transformations in the soil were determined for the 80 d period following incorporation. Nitrogen uptake and crop yield were measured in the cut sward 35 and 70 d after sowing. The study showed that application of sewage sludge at rates as low as 4 Mgha(-1) can have a nutritional benefit to rye-grass over the two harvests. Differences in N transformation, and hence crop nutritional benefit, between sludge types were evident throughout the experiment. In particular, the dewatering process changed the mineral N characteristics of the anaerobically digested sludge, which, when not dewatered, outperformed the other sludges in terms of yield and mineralisation rate at both harvests. The dewatered sludge produced the lowest yield of rye-grass. The undigested liquid sludge had the lowest foliar N and soil NO(3)-N concentrations, possibly immobilised as the large oxidisable C component of this sludge was metabolised by the microbial biomass. Correlation data support the concept of preferential uptake of NH(4)-N over NO(3)-N in Lolium perenne. Results are discussed in the context of managing sludge type and application for a plant nutrient source and NO(3)-N release.