49 resultados para Sentiment Analysis, Opinion Mining, Twitter
Resumo:
This paper critiques the approach taken by the Ghanaian Government to address mercury pollution in the artisanal and small-scale gold mining sector. Unmonitored releases of mercury-used in the gold-amalgamation process-have caused numerous environmental complications throughout rural Ghana. Certain policy, technological and educational initiatives taken to address the mounting problem, however, have proved marginally effective at best, having been designed and implemented without careful analysis of mine community dynamics, the organization of activities, operators' needs and local geological conditions. Marked improvements can only be achieved in this area through increased government-initiated dialogue with the now-ostracized illegal galamsey mining community; introducing simple, cost-effective techniques for the reduction of mercury emissions; and effecting government-sponsored participatory training exercises as mediums for communicating information about appropriate technologies and the environment. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
This paper examines the debate surrounding a recent decision made by the Ghanaian government to permit gold exploration - and potentially, mining - in 'protected' forest reserves. In 2001, four mining companies were awarded mineral exploration concessions in forested regions of the country, and have since put forward applications to mine for gold. Notwithstanding the sharp divide in opinion on the issue, the continued uncertainty surrounding the implications of the proposed activities makes further research on the ground imperative in the short term. Work aiming to elicit indigenous perspectives on the projects, as well as research that facilitates dialogue between and/or among stakeholder parties, should be prioritized.
Resumo:
This paper examines the life cycle GHG emissions from existing UK pulverized coal power plants. The life cycle of the electricity Generation plant includes construction, operation and decommissioning. The operation phase is extended to upstream and downstream processes. Upstream processes include the mining and transport of coal including methane leakage and the production and transport of limestone and ammonia, which are necessary for flue gas clean up. Downstream processes, on the other hand, include waste disposal and the recovery of land used for surface mining. The methodology used is material based process analysis that allows calculation of the total emissions for each process involved. A simple model for predicting the energy and material requirements of the power plant is developed. Preliminary calculations reveal that for a typical UK coal fired plant, the life cycle emissions amount to 990 g CO2-e/kWh of electricity generated, which compares well with previous UK studies. The majority of these emissions result from direct fuel combustion (882 g/kWh 89%) with methane leakage from mining operations accounting for 60% of indirect emissions. In total, mining operations (including methane leakage) account for 67.4% of indirect emissions, while limestone and other material production and transport account for 31.5%. The methodology developed is also applied to a typical IGCC power plant. It is found that IGCC life cycle emissions are 15% less than those from PC power plants. Furthermore, upon investigating the influence of power plant parameters on life cycle emissions, it is determined that, while the effect of changing the load factor is negligible, increasing efficiency from 35% to 38% can reduce emissions by 7.6%. The current study is funded by the UK National Environment Research Council (NERC) and is undertaken as part of the UK Carbon Capture and Storage Consortium (UKCCSC). Future work will investigate the life cycle emissions from other power generation technologies with and without carbon capture and storage. The current paper reveals that it might be possible that, when CCS is employed. the emissions during generation decrease to a level where the emissions from upstream processes (i.e. coal production and transport) become dominant, and so, the life cycle efficiency of the CCS system can be significantly reduced. The location of coal, coal composition and mining method are important in determining the overall impacts. In addition to studying the net emissions from CCS systems, future work will also investigate the feasibility and technoeconomics of these systems as a means of carbon abatement.
Resumo:
A wireless sensor network (WSN) is a group of sensors linked by wireless medium to perform distributed sensing tasks. WSNs have attracted a wide interest from academia and industry alike due to their diversity of applications, including home automation, smart environment, and emergency services, in various buildings. The primary goal of a WSN is to collect data sensed by sensors. These data are characteristic of being heavily noisy, exhibiting temporal and spatial correlation. In order to extract useful information from such data, as this paper will demonstrate, people need to utilise various techniques to analyse the data. Data mining is a process in which a wide spectrum of data analysis methods is used. It is applied in the paper to analyse data collected from WSNs monitoring an indoor environment in a building. A case study is given to demonstrate how data mining can be used to optimise the use of the office space in a building.
Resumo:
The genetic analysis workshop 15 (GAW15) problem 1 contained baseline expression levels of 8793 genes in immortalised B cells from 194 individuals in 14 Centre d’Etude du Polymorphisme Humane (CEPH) Utah pedigrees. Previous analysis of the data showed linkage and association and evidence of substantial individual variations. In particular, correlation was examined on expression levels of 31 genes and 25 target genes corresponding to two master regulatory regions. In this analysis, we apply Bayesian network analysis to gain further insight into these findings. We identify strong dependences and therefore provide additional insight into the underlying relationships between the genes involved. More generally, the approach is expected to be applicable for integrated analysis of genes on biological pathways.
Resumo:
This paper provides an extended analysis of livelihood diversification in rural Tanzania, with special emphasis on artisanal and small-scale mining (ASM). Over the past decade, this sector of industry, which is labour-intensive and comprises an array of rudimentary and semi-mechanized operations, has become an indispensable economic activity throughout Sub-Saharan Africa, providing employment to a host of redundant public sector workers, retrenched large-scale mine labourers and poor farmers. In many of the region’s rural areas, it is overtaking subsistence agriculture as the primary industry. Such a pattern appears to be unfolding within the Morogoro and Mbeya regions of southern Tanzania, where findings from recent research suggest that a growing number of smallholder farmers are turning to ASM for employment and financial support. It is imperative that national rural development programmes take this trend into account and provide support to these people.
Resumo:
Aircraft Maintenance, Repair and Overhaul (MRO) agencies rely largely on row-data based quotation systems to select the best suppliers for the customers (airlines). The data quantity and quality becomes a key issue to determining the success of an MRO job, since we need to ensure we achieve cost and quality benchmarks. This paper introduces a data mining approach to create an MRO quotation system that enhances the data quantity and data quality, and enables significantly more precise MRO job quotations. Regular Expression was utilized to analyse descriptive textual feedback (i.e. engineer’s reports) in order to extract more referable highly normalised data for job quotation. A text mining based key influencer analysis function enables the user to proactively select sub-parts, defects and possible solutions to make queries more accurate. Implementation results show that system data would improve cost quotation in 40% of MRO jobs, would reduce service cost without causing a drop in service quality.
Resumo:
The governance of water resources is prominent in both water policy agendas and academic scholarship. Political ecologists have made important advances in reconceptualising the relationship between water and society. Yet, while they have stressed both the scalar dimensions, and the politicised nature, of water governance, analyses of its scalar politics are relatively nascent. In this paper, we consider how the increased demand for water resources by the growing mining industry in Peru reconfigures and rescales water governance. In Peru, the mining industry’s thirst for water draws in, and reshapes, social relations, technologies, institutions and discourses that operate over varying spatial and temporal scales. We develop the concept of waterscape to examine these multiple ways in water is co-produced through mining, and become embedded in changing modes and structures of water governance, often beyond the watershed scale. We argue that an examination of waterscapes avoids the limitations of thinking about water in purely material terms, structuring analysis of water issues according to traditional spatial scales and institutional hierarchies, and taking these scales and structures for granted.
Safeguarding livelihoods or exacerbating poverty?: Artisanal mining and formalization in West Africa
Resumo:
In recent years, policy mechanisms to support a formalized artisanal and small-scale mining (ASM) sector in sub-Saharan Africa have gained increasing currency. Proponents of formalization argue that most social and environmental problems associated with the sector stem from the fact that ASM is predominantly unregulated and operates outside the legal sphere. This paper critically examines recent efforts to formalize artisanal and small-scale mining inWest Africa, drawing upon recent fieldwork carried out in Sierra Leone, Ghana and Mali. In exploring the sector’s livelihood dimensions, the analysis suggests that bringing unregulated, informal mining activities into the legal domain remains a considerable challenge. The paper concludes by confirming the urgent need to refocus formalization strategies on the main livelihood challenges and constraints of small-scale miners themselves, if poverty is to be alleviated and more benefits are to accrue to depressed communities in mineral-rich regions.
Resumo:
The reform of previously state-owned and operated industries in many Less Developed Countries (LDCs) provide contrary experiences to those in the developed world, which have generally had more equitable distributional impacts. The economic reform policies proposed by the so-called 'Washington Consensus' state that privatisation provides governments with opportunities to raise revenues through the sale of under-performing and indebted state industries, thereby reducing significant fiscal burdens, and, at the same time, facilitating influxes of foreign capital, skills and technology, with the aim of improving operations and a "trickle-down" of benefits. However, experiences in many LDCs over the last 15-20 years suggest that reform has not solved the problem of chronic public-sector debt, and that poverty and socio-economic inequalities have increased during this period of 'neo-liberal' economics. This paper does not seek to challenge the policies themselves, but rather argues that the context in which reform has often taken place is of fundamental significance. The industry-centric policy advice provided by the IFIs typically causes a 'lock-in' of inequitably distributed 'efficiency gains', providing minimal, if any, benefits to impoverished groups. These arguments are made using case study analysis from the electricity and mining sectors.
Resumo:
We evaluate a number of real estate sentiment indices to ascertain current and forward-looking information content that may be useful for forecasting the demand and supply activities. Our focus lies on sector-specific surveys targeting the players from the supply-side of both residential and non-residential real estate markets. Analyzing the dynamic relationships within a Vector Auto-Regression (VAR) framework, we test the efficacy of these indices by comparing them with other coincident indicators in predicting real estate returns. Overall, our analysis suggests that sentiment indicators convey important information which should be embedded in the modeling exercise to predict real estate market returns. Generally, sentiment indices show better information content than broad economic indicators. The goodness of fit of our models is higher for the residential market than for the non-residential real estate sector. The impulse responses, in general, conform to our theoretical expectations. Variance decompositions and out-of-sample predictions generally show desired contribution and reasonable improvement respectively, thus upholding our hypothesis. Quite remarkably, consistent with the theory, the predictability swings when we look through different phases of the cycle. This perhaps suggests that, e.g. during recessions, market players’ expectations may be more accurate predictor of the future performances, conceivably indicating a ‘negative’ information processing bias and thus conforming to the precautionary motive of consumer behaviour.
Resumo:
We look through both the demand and supply side information to understand dynamics of price determination in the real estate market and examine how accurately investors’ attitudes predict the market returns and thereby flagging off extent of any demand-supply mismatch. Our hypothesis is based on the possibility that investors’ call for action in terms of their buy/sell decision and adjustment in reservation/offer prices may indicate impending demand-supply imbalances in the market. In the process, we study several real estate sectors to inform our analysis. The timeframe of our analysis (1995-2010) allows us to observe market dynamics over several economic cycles and in various stages of those cycles. Additionally, we also seek to understand how investors’ attitude or the sentiment affects the market activity over the cycles through asymmetric responses. We test our hypothesis variously using a number of measures of market activity and attitude indicators within several model specifications. The empirical models are estimated using Vector Error Correction framework. Our analysis suggests that investors’ attitude exert strong and statistically significant feedback effects in price determination. Moreover, these effects do reveal heterogeneous responses across the real estate sectors. Interestingly, our results indicate the asymmetric responses during boom, normal and recessionary periods. These results are consistent with the theoretical underpinnings.
Resumo:
This paper critically reflects on why, in many rural stretches of sub-Saharan Africa, scores of people engage in artisanal and small-scale mining (ASM) activity – low-tech, labour intensive mineral extraction – for lengthy periods of time. It argues that a large share of the region’s ASM operators have mounting debts which prevent them from pursuing alternative, less arduous, employment. The paper concludes with an analysis of findings from research carried out by the author in Talensi-Nabdam District, Northern Ghana, which captures the essence of the poverty trap now plaguing so many ASM communities in sub-Saharan Africa.
Resumo:
PURPOSE: Since its introduction in 2006, messages posted to the microblogging system Twitter have provided a rich dataset for researchers, leading to the publication of over a thousand academic papers. This paper aims to identify this published work and to classify it in order to understand Twitter based research. DESIGN/METHODOLOGY/APPROACH: Firstly the papers on Twitter were identified. Secondly, following a review of the literature, a classification of the dimensions of microblogging research was established. Thirdly, papers were qualitatively classified using open coded content analysis, based on the paper’s title and abstract, in order to analyze method, subject, and approach. FINDINGS: The majority of published work relating to Twitter concentrates on aspects of the messages sent and details of the users. A variety of methodological approaches are used across a range of identified domains. RESEARCH LIMITATIONS/IMPLICATIONS: This work reviewed the abstracts of all papers available via database search on the term “Twitter” and this has two major implications: 1) the full papers are not considered and so works may be misclassified if their abstract is not clear, 2) publications not indexed by the databases, such as book chapters, are not included. ORIGINALITY/VALUE: To date there has not been an overarching study to look at the methods and purpose of those using Twitter as a research subject. Our major contribution is to scope out papers published on Twitter until the close of 2011. The classification derived here will provide a framework within which researchers studying Twitter related topics will be able to position and ground their work
Resumo:
OBJECTIVES: The prediction of protein structure and the precise understanding of protein folding and unfolding processes remains one of the greatest challenges in structural biology and bioinformatics. Computer simulations based on molecular dynamics (MD) are at the forefront of the effort to gain a deeper understanding of these complex processes. Currently, these MD simulations are usually on the order of tens of nanoseconds, generate a large amount of conformational data and are computationally expensive. More and more groups run such simulations and generate a myriad of data, which raises new challenges in managing and analyzing these data. Because the vast range of proteins researchers want to study and simulate, the computational effort needed to generate data, the large data volumes involved, and the different types of analyses scientists need to perform, it is desirable to provide a public repository allowing researchers to pool and share protein unfolding data. METHODS: To adequately organize, manage, and analyze the data generated by unfolding simulation studies, we designed a data warehouse system that is embedded in a grid environment to facilitate the seamless sharing of available computer resources and thus enable many groups to share complex molecular dynamics simulations on a more regular basis. RESULTS: To gain insight into the conformational fluctuations and stability of the monomeric forms of the amyloidogenic protein transthyretin (TTR), molecular dynamics unfolding simulations of the monomer of human TTR have been conducted. Trajectory data and meta-data of the wild-type (WT) protein and the highly amyloidogenic variant L55P-TTR represent the test case for the data warehouse. CONCLUSIONS: Web and grid services, especially pre-defined data mining services that can run on or 'near' the data repository of the data warehouse, are likely to play a pivotal role in the analysis of molecular dynamics unfolding data.