19 resultados para Schwartz values scale. Profile of technology use. Technological education. Values
Resumo:
Purpose Personalised intervention may have greater potential for reducing the global burden of non-communicable diseases and for promoting better health and wellbeing across the life-span than the conventional “one size fits all” approach. However, the characteristics of individuals interested in personalised nutrition (PN) are unclear. Therefore, the aim of this study was to describe the characteristics of European adults interested in taking part in an internet-based PN study. Methods Individuals from seven European countries (UK, Ireland, Germany, the Netherlands, Spain, Greece and Poland) were invited to participate in the study via the Food4Me website (http://www.food4me.org). Two screening questionnaires were used to collect data on socio-demographic, anthropometric and health characteristics as well as dietary intakes. Results A total of 5662 individuals expressed an interest in the study (mean age 40 ± 12.7; range 15-87 years). Of these 64.6% were female and 96.9% were Caucasian. Overall, 12.9% were smokers and 46.8% reported the presence of a clinically diagnosed disease. Furthermore, 46.9% were overweight or obese and 34.9% were sedentary during leisure time. Assessment of dietary intakes showed that 54.3% of individuals reported consuming at least 5 portions of fruit and vegetables per day, 45.9% consumed more than 3 servings of wholegrains and 37.2% limited their salt intake to less than 5.75g per day. Conclusions Our data indicate that individuals volunteering to participate in an internet-based PN study are broadly representative of the European adult population, most of whom had adequate nutrient intakes but who could benefit from improved dietary choices and greater physical activity. Future use of internet-based PN approaches is thus relevant to a wide target audience.
Resumo:
Cistus is a plant genus traditionally used in folk medicine as remedy for several microbial disorders and infections. The abundance of Cistus spp. in the Iberian Peninsula together with their ability to renew after wildfire contribute to their profitability as suppliers of functional ingredients. The aim of this study was to provide a comprehensive characterization of the volatile profile of different Cistus plants grown in Spain:Cistus ladanifer L., Cistus albidus L., Cistus salviifolius L., and Cistus clusii Dunal (the latter has not been studied before). A system combining headspace solid-phase microextraction and gas chromatography coupled to mass spectrometry (HS-SPME-GC–MS) was implemented; thereby, the volatile compounds were extracted and analyzed in a fast, reliable and environment-friendly way. A total of 111 volatile compounds were identified, 28 of which were reported in Cistus for the first time. The most abundant components of the samples (mono and sesquiterpenes) have been previously reported as potent antimicrobial agents. Therefore, this work reveals the potential use of the Cistus spp. studied as natural sources of antimicrobial compounds for industrial production of cosmeceuticals, among other applications.
Resumo:
Technological change has often been presented as a readily accepted means by which long-term greenhouse gas (GHG) emission reductions can be achieved. Cities are the future centers of economic growth, with the global population becoming predominantly urban; hence, increases or reductions of GHG emissions are tied to their energy strategies. This research examines the likelihood of a developed world city (the Greater Toronto Area) achieving an 80% reduction in GHG emissions through policy-enabled technological change. Emissions are examined from 3 major sources: light duty passenger vehicles, residential buildings and commercial/institutional buildings. Logistic diffusion curves are applied for the adoption of alternative vehicle technologies, building retrofits and high performance new building construction. This research devises high, low and business-as-usual estimates of future technological adoption and finds that even aggressive scenarios are not sufficient to achieve an 80% reduction in GHG emissions by 2050. This further highlights the challenges faced in maintaining a relatively stable climate. Urban policy makers must consider that the longer the lag before this transition occurs, the greater the share of GHG emissions mitigation that must addressed through behavioural change in order to meet the 2050 target, which likely poses greater political challenges.
Resumo:
We present one of the first studies of the use of Distributed Temperature Sensing (DTS) along fibre-optic cables to purposely monitor spatial and temporal variations in ground surface temperature (GST) and soil temperature, and provide an estimate of the heat flux at the base of the canopy layer and in the soil. Our field site was at a groundwater-fed wet meadow in the Netherlands covered by a canopy layer (between 0-0.5 m thickness) consisting of grass and sedges. At this site, we ran a single cable across the surface in parallel 40 m sections spaced by 2 m, to create a 40×40 m monitoring field for GST. We also buried a short length (≈10 m) of cable to depth of 0.1±0.02 m to measure soil temperature. We monitored the temperature along the entire cable continuously over a two-day period and captured the diurnal course of GST, and how it was affected by rainfall and canopy structure. The diurnal GST range, as observed by the DTS system, varied between 20.94 and 35.08◦C; precipitation events acted to suppress the range of GST. The spatial distribution of GST correlated with canopy vegetation height during both day and night. Using estimates of thermal inertia, combined with a harmonic analysis of GST and soil temperature, substrate and soil-heat fluxes were determined. Our observations demonstrate how the use of DTS shows great promise in better characterising area-average substrate/soil heat flux, their spatiotemporal variability, and how this variability is affected by canopy structure. The DTS system is able to provide a much richer data set than could be obtained from point temperature sensors. Furthermore, substrate heat fluxes derived from GST measurements may be able to provide improved closure of the land surface energy balance in micrometeorological field studies. This will enhance our understanding of how hydrometeorological processes interact with near-surface heat fluxes.