58 resultados para Salivary proteins and peptides
Resumo:
The small (21 kDa) guanine nucleotide-binding protein (small G protein) superfamily comprises 5 subfamilies (Ras, Rho, ADP ribosylation factors [ARFs], Rab, and Ran) that act as molecular switches to regulate numerous cellular responses. Cardiac myocyte hypertrophy is associated with cell growth and changes in the cytoskeleton and myofibrillar apparatus. In other cells, the Ras subfamily regulates cell growth whereas the Rho subfamily (RhoA, Rac1, and Cdc42) regulates cell morphology. Thus, the involvement of small G proteins in hypertrophy has become an area of significant interest. Hearts from transgenic mice expressing activated Ras develop features consistent with hypertrophy, whereas mice overexpressing RhoA develop lethal heart failure. In isolated neonatal rat cardiac myocytes, transfection or infection with activated Ras, RhoA, or Rac1 induces many of the features of hypertrophy. We discuss the mechanisms of activation of the small G proteins and the downstream signaling pathways involved. The latter may include protein kinases, particularly the mitogen-activated or Rho-activated protein kinases. We conclude that although there is significant evidence implicating Ras, RhoA, and Rac1 in hypertrophy, the mechanisms are not fully understood.
Resumo:
We present a comparative study between LC/MALDI/MS/MS and LC/ESI/MS/MS. Diagnostic biomarkers in saliva have been identified for monitoring caries, periodontitis, oral cancer, salivary gland diseases, and systemic disorders e.g. hepatitis and HIV[1]. Saliva is similar to serum in that there are a small number of highly abundant proteins and many low abundance proteins. There are 35 previously identified salivary proteins [1-4]. We prepared a representative sample of cysteine containing peptides and oxidised them to improve their fragmentation under MALDI conditions. In total 20 proteins were identified with 6 been identified by both methods. Surprisingly there was little overlap in the peptides used to identify the proteins between the two methods
Resumo:
The cupin superfamily is a group of functionally diverse proteins that are found in all three kingdoms of life, Archaea, Eubacteria, and Eukaryota. These proteins have a characteristic signature domain comprising two histidine- containing motifs separated by an intermotif region of variable length. This domain consists of six beta strands within a conserved beta barrel structure. Most cupins, such as microbial phosphomannose isomerases (PMIs), AraC- type transcriptional regulators, and cereal oxalate oxidases (OXOs), contain only a single domain, whereas others, such as seed storage proteins and oxalate decarboxylases (OXDCs), are bi-cupins with two pairs of motifs. Although some cupins have known functions and have been characterized at the biochemical level, the majority are known only from gene cloning or sequencing projects. In this study, phylogenetic analyses were conducted on the conserved domain to investigate the evolution and structure/function relationships of cupins, with an emphasis on single- domain plant germin-like proteins (GLPs). An unrooted phylogeny of cupins from a wide spectrum of evolutionary lineages identified three main clusters, microbial PMIs, OXDCs, and plant GLPs. The sister group to the plant GLPs in the global analysis was then used to root a phylogeny of all available plant GLPs. The resulting phylogeny contained three main clades, classifying the GLPs into distinct subfamilies. It is suggested that these subfamilies correlate with functional categories, one of which contains the bifunctional barley germin that has both OXO and superoxide dismutase (SOD) activity. It is proposed that GLPs function primarily as SODs, enzymes that protect plants from the effects of oxidative stress. Closer inspection of the DNA sequence encoding the intermotif region in plant GLPs showed global conservation of thymine in the second codon position, a character associated with hydrophobic residues. Since many of these proteins are multimeric and enzymatically inactive in their monomeric state, this conservation of hydrophobicity is thought to be associated with the need to maintain the various monomer- monomer interactions. The type of structure-based predictive analysis presented in this paper is an important approach for understanding gene function and evolution in an era when genomes from a wide range of organisms are being sequenced at a rapid rate.
Resumo:
This review summarizes the recent discovery of the cupin superfamily (from the Latin term "cupa," a small barrel) of functionally diverse proteins that initially were limited to several higher plant proteins such as seed storage proteins, germin (an oxalate oxidase), germin-like proteins, and auxin-binding protein. Knowledge of the three-dimensional structure of two vicilins, seed proteins with a characteristic beta-barrel core, led to the identification of a small number of conserved residues and thence to the discovery of several microbial proteins which share these key amino acids. In particular, there is a highly conserved pattern of two histidine-containing motifs with a varied intermotif spacing. This cupin signature is found as a central component of many microbial proteins including certain types of phosphomannose isomerase, polyketide synthase, epimerase, and dioxygenase. In addition, the signature has been identified within the N-terminal effector domain in a subgroup of bacterial AraC transcription factors. As well as these single-domain cupins, this survey has identified other classes of two-domain bicupins including bacterial gentisate 1, 2-dioxygenases and 1-hydroxy-2-naphthoate dioxygenases, fungal oxalate decarboxylases, and legume sucrose-binding proteins. Cupin evolution is discussed from the perspective of the structure-function relationships, using data from the genomes of several prokaryotes, especially Bacillus subtilis. Many of these functions involve aspects of sugar metabolism and cell wall synthesis and are concerned with responses to abiotic stress such as heat, desiccation, or starvation. Particular emphasis is also given to the oxalate-degrading enzymes from microbes, their biological significance, and their value in a range of medical and other applications.
Resumo:
The separation of mixtures of proteins by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) is a technique that is widely used—and, indeed, this technique underlies many of the assays and analyses that are described in this book. While SDS-PAGE is routine in many labs, a number of issues require consideration before embarking on it for the first time. We felt, therefore, that in the interest of completeness of this volume, a brief chapter describing the basics of SDS-PAGE would be helpful. Also included in this chapter are protocols for the staining of SDS-PAGE gels to visualize separated proteins, and for the electrotransfer of proteins to a membrane support (Western blotting) to enable immunoblotting, for example. This chapter is intended to complement the chapters in this book that require these techniques to be performed. Therefore, detailed examples of why and when these techniques could be used will not be discussed here.
Resumo:
Protein-bound glutathione (PSSG) and protein-bound related thiol compounds, i.e. cysteine (PSSCys), glutamyl-cysteine (PSSGlu-Cys) and cysteinyl-glycine (PSSCys-Gly), were analysed in proteins of Osborne fractions, i.e. gliadin, glutenin and gliadin-, glutenin-subfractions separated by gel filtration chromatography, gel protein and the total gluten proteins separated from wheat varieties with varying breadmaking performances. The results showed that PSSG and some protein-bound related thiol compounds were found in monomeric gliadins, indicating that glutathione and some related thiol compounds are able to form disulphide bonds (SS) with sulphydryl group (SH) of those proteins and the formation of those disulphide bonds may prevent those monomeric proteins from binding to other proteins. It was also observed that a larger amount of PSSG in glutenin proteins was negatively correlated with the molecular weight (M-w) distribution of glutenin polymers, suggesting that PSSG and protein-bound related thiol compounds may play an important role in controlling polymerisation of glutenin. Furthermore, it was found that the level of PSSG in gel protein from flours with poor breadmaking performances was constantly higher and significantly different (p < 0.05) from that of flours with good breadmaking performance. The same trend was observed with gluten samples from breadmaking and biscuitmaking flours. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The incorporation of caseins and whey proteins into acid gels produced from unheated and heat treated skimmed milk was studied by confocal scanning laser microscopy (CSLM) using fluorescent labelled proteins. Bovine casein micelles were labelled using Alexa Fluor 594, while whey proteins were labelled using Alexa Fluor 488. Samples of the labelled protein solutions were introduced into aliquots of pasteurised skim milk, and skim milk heated to 90 degrees C for 2 min and 95 degrees C for 8 min. The milk was acidified at 40 degrees C to a final pH of 4.4 using 20 g gluconodelta-lactone/l (GDL). The formation of gels was observed with CSLM at two wavelengths (488 nm and 594 nm), and also by visual and rheological methods. In the control milk, as pH decreased distinct casein aggregates appeared, and as further pH reduction occurred, the whey proteins could be seen to coat the casein aggregates. With the heated milks, the gel structure was formed of continuous strands consisting of both casein and whey protein. The formation of the gel network was correlated with an increase in the elastic modulus for all three treatments, in relation to the severity of heat treatment. This model system allows the separate observation of the caseins and whey proteins, and the study of the interactions between the two protein fractions during the formation of the acid gel structure, on a real-time basis. The system could therefore be a valuable tool in the study of structure formation in yoghurt and other dairy protein systems.
Improved fluorescent proteins for single-molecule research in molecular tracking and co-localization
Resumo:
Three promising variants of autofluorescent proteins have been analyzed photophysically for their proposed use in single-molecule microscopy studies in living cells to compare their superiority to other fluorescent proteins previously reported regarding the number of photons emitted. The first variant under investigation the F46L mutant of eYFP has a 10% greater photon emission rate and > 50% slower photobleaching rate on average than the standard eYFP fluorophore. The monomeric red fluorescent protein (mRFP) has a fivefold lower photon emission rate, likely due to the monomeric content, and also a tenfold faster photobleaching rate than the DsRed fluorescent protein. In contrast, the previously reported eqfp611 has a 50% lower emission rate yet photobleaches more than a factor 2 slowly. We conclude that the F46L YFP and the eqfp611 are superior new options for single molecule imaging and tracking studies in living cells. Studies were also performed on the effects of forced quenching of multiple fluorescent proteins in sub-micrometer regions that would show the effects of dimerization at low concentration levels of fluorescent proteins and also indicate corrections to stoichiometry patterns with fluorescent proteins previously in print. We also introduce properties at the single molecule level of new FRET pairs with combinations of fluorescent proteins and artificial fluorophores.
Resumo:
Corticotropin-releasing factor (CRF) has been shown to have a central role in physiological adaptation to stress. It is recognized for stimulating the release of adrenocorticotropin from the anterior pituitary gland, and has more recently been implicated as a regulator of autonomic and immunological responses to stress. Much confusion has surrounded the characterization of CRF receptors, with proteins of varying molecular weights having been identified but never purified and characterized. Recently, two CRF receptors have been cloned from brain and pituitary gland, but evidence from in-situ hybridization studies suggests that further CRF receptor types exist. We therefore developed two techniques which enable the isolation of CRF receptors from whole rat brain. The use of a solid-phase CRF analogue affinity column and elution using a competing ligand resulted in the purification of a single protein of 61 kDa. A second technique was devised which allowed the co-isolation of associated signalling proteins and the identification of CRF bound species following purification. CRF was covalently cross-linked to receptors and the complex purified using antibodies specific for the ligand. This enabled the purification of a CRF receptor of approximately 65 kDa and associated alpha and beta gamma G protein subunits. This study demonstrates the successful isolation of CRF receptors which are of different molecular weights to those previously observed from affinity cross-linking studies or predicted from cloned genes. In addition, we confirm the involvement of G proteins in CRF stimulated cell signalling by demonstrating their association with purified CRF receptor.
Resumo:
The proteome of Salmonella enterica serovar Typhimurium was characterized by 2-dimensional HPLC mass spectrometry to provide a platform for subsequent proteomic investigations of low level multiple antibiotic resistance (MAR). Bacteria (2.15 +/- 0.23 x 10(10) cfu; mean +/- s.d.) were harvested from liquid culture and proteins differentially fractionated, on the basis of solubility, into preparations representative of the cytosol, cell envelope and outer membrane proteins (OMPs). These preparations were digested by treatment with trypsin and peptides separated into fractions (n = 20) by strong cation exchange chromatography (SCX). Tryptic peptides in each SCX fraction were further separated by reversed-phase chromatography and detected by mass spectrometry. Peptides were assigned to proteins and consensus rank listings compiled using SEQUEST. A total of 816 +/- 11 individual proteins were identified which included 371 +/- 33, 565 +/- 15 and 262 +/- 5 from the cytosolic, cell envelope and OMP preparations, respectively. A significant correlation was observed (r(2) = 0.62 +/- 0.10; P < 0.0001) between consensus rank position for duplicate cell preparations and an average of 74 +/- 5% of proteins were common to both replicates. A total of 34 outer membrane proteins were detected, 20 of these from the OMP preparation. A range of proteins (n = 20) previously associated with the mar locus in E. coli were also found including the key MAR effectors AcrA, TolC and OmpF.
Resumo:
Cardiac myocyte apoptosis is potentially important in many cardiac disorders. In other cells, Bcl-2 family proteins and mitochondrial dysfunction are probably key regulators of the apoptotic response. In the present study, we characterized the regulation of antiapoptotic (Bcl-2, Bcl-xL) and proapoptotic (Bad, Bax) Bcl-2 family proteins in the rat heart during development and in oxidative stress-induced apoptosis. Bcl-2 and Bcl-xL were expressed at high levels in the neonate, and their expression was sustained during development. In contrast, although Bad and Bax were present at high levels in neonatal hearts, they were barely detectable in adult hearts. We confirmed that H(2)O(2) induced cardiac myocyte cell death, stimulating poly(ADP-ribose) polymerase proteolysis (from 2 hours), caspase-3 proteolysis (from 2 hours), and DNA fragmentation (from 8 hours). In unstimulated neonatal cardiac myocytes, Bcl-2 and Bcl-xL were associated with the mitochondria, but Bad and Bax were predominantly present in a crude cytosolic fraction. Exposure of myocytes to H(2)O(2) stimulated rapid translocation of Bad (<5 minutes) to the mitochondria. This was followed by the subsequent degradation of Bad and Bcl-2 (from approximately 30 minutes). The levels of the mitochondrial membrane marker cytochrome oxidase remained unchanged. H(2)O(2) also induced translocation of cytochrome c from the mitochondria to the cytosol within 15 to 30 minutes, which was indicative of mitochondrial dysfunction. Myocytes exposed to H(2)O(2) showed an early loss of mitochondrial membrane potential (assessed by fluorescence-activated cell sorter analysis) from 15 to 30 minutes, which was partially restored by approximately 1 hour. However, a subsequent irreversible loss of mitochondrial membrane potential occurred that correlated with cell death. These data suggest that the regulation of Bcl-2 and mitochondrial function are important factors in oxidative stress-induced cardiac myocyte apoptosis.
Resumo:
Aims: To investigate the changes in the surface properties of Lactobacillus rhamnosus GG during growth, and relate them with the ability of the Lactobacillus cells to adhere to Caco-2 cells. Methods and Results: Lactobacillus rhamnosus GG was grown in complex medium, and cell samples taken at four time points and freeze dried. Untreated and trypsin treated freeze dried samples were analysed for their composition using SDS-PAGE analysis and Fourier transform infrared spectroscopy (FTIR), hydrophobicity and zeta potential, and for their ability to adhere to Caco-2 cells. The results suggested that in the case of early exponential phase samples (4 and 8 h), the net surface properties, i.e. hydrophobicity and charge, were determined to a large extent by anionic hydrophilic components, whereas in the case of stationary phase samples (13 and 26 h), hydrophobic proteins seemed to play the biggest role. Considerable differences were also observed between the ability of the different samples to adhere to Caco-2 cells; maximum adhesion was observed for the early stationary phase sample (13 h). The results suggested that the adhesion to Caco-2 cells was influenced by both proteins and non-proteinaceous compounds present on the surface of the Lactobacillus cells. Conclusion: The surface properties of Lact. rhamnosus GG changed during growth, which in return affected the ability of the Lactobacillus cells to adhere to Caco-2 cells. Significance and Impact of the Study: The levels of adhesion of Lactobacillus cells to Caco-2 cells were influenced by the growth time and reflected changes on the bacterial surface. This study provides critical information on the physicochemical factors that influence bacterial adhesion to intestinal cells.
Resumo:
The platelet surface is a dynamic interface that changes rapidly in response to stimuli to coordinate the formation of thrombi at sites of vascular injury. Tight control is essential as loss of organisation may result in the inappropriate formation of thrombi (thrombosis) or excessive bleeding. In this paper we describe the comparative analysis of resting and thrombin-stimulated platelet membrane proteomes and associated proteins to identify proteins important to platelet function. Surface proteins were labelled using a biotin tag and isolated by NeurtrAvidin affinity chromatography. Liquid phase IEF and SDS-PAGE were used to separate proteins, and bands of increased intensity in the stimulated platelet fractions were digested and identified by FT-ICR mass spectrometry. Novel proteins were identified along with proteins known to be translocated to the platelet surface. Furthermore, many platelet proteins revealed changes in location associated with function, including G6B and Hip-55. HIP-55 is an SH3-binding protein important in T-cell receptor signalling. Further analysis of HIP-55 revealed that this adaptor protein becomes increasingly associated with both Syk and integrin beta 3 upon platelet activation. Analysis of HIP-55 deficient platelets revealed reduced fibrinogen binding upon thrombin stimulation, suggesting HIP-55 to be an important regulator of platelet function.
Resumo:
Prenatal testosterone excess leads to neuroendocrine, ovarian, and metabolic disruptions, culminating in reproductive phenotypes mimicking that of women with polycystic ovary syndrome (PCOS). The objective of this study was to determine the consequences of prenatal testosterone treatment on periovulatory hormonal dynamics and ovulatory outcomes. To generate prenatal testosterone-treated females, pregnant sheep were injected intramuscularly (days 30-90 of gestation, term = 147 days) with 100 mg of testosterone-propionate in cottonseed oil semi-weekly. Female offspring born to untreated control females and prenatal testosterone-treated females were then studied during their first two breeding seasons. Sheep were given two injections of prostaglandin F-2alpha 11 days apart, and blood samples were collected at 2-h intervals for 120 h, 10-min intervals for 8 h during the luteal phase (first breeding season only), and daily for an additional 15 days to characterize changes in reproductive hormonal dynamics. During the first breeding season, prenatal testosterone-treated females manifested disruptions in the timing and magnitude of primary gonadotropin surges, luteal defects, and reduced responsiveness to progesterone negative feedback. Disruptions in the periovulatory sequence of events during the second breeding season included: 1) delayed but increased preovulatory estradiol rise, 2) delayed and severely reduced primary gonadotropin surge in prenatal testosterone-treated females having an LH surge, 3) tendency for an amplified secondary FSH surge and a shift in the relative balance of FSH regulatory proteins, and 4) luteal responses that ranged from normal to anovulatory. These outcomes are likely to be of relevance to developmental origin of infertility disorders and suggest that differences in fetal exposure or fetal susceptibility to testosterone may account for the variability in reproductive phenotypes.
Resumo:
In eukaryotic cells, cell growth and division occur in a stepwise, orderly fashion described by a process known as the cell cycle. The relationship between positive-strand RNA viruses and the cell cycle and the concomitant effects on virus replication are not clearly understood. We have shown that infection of asynchronously replicating and synchronized replicating cells with the avian coronavirus infectious bronchitis virus (IBV), a positive-strand RNA virus, resulted in the accumulation of infected cells in the G(2)/M phase of the cell cycle. Analysis of various cell cycle-regulatory proteins and cellular morphology indicated that there was a down-regulation of cyclins D1 and D2 (G(2) regulatory cyclins) and that a proportion of virus-infected cells underwent aberrant cytokinesis, in which the cells underwent nuclear, but not cytoplasmic, division. We assessed the impact of the perturbations on the cell cycle for virus-infected cells and found that IBV-infected G(2)/M-phase-synchronized cells exhibited increased viral protein production when released from the block when compared to cells synchronized in the Go phase or asynchronously replicating cells. Our data suggested that IBV induces a G(2)/M phase arrest in infected cells to promote favorable conditions for viral replication.