27 resultados para SUBSTRATES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here the patterning of primary rat neurons and astrocytes from the postnatal hippocampus on ultra-thin parylene-C deposited on a silicon dioxide substrate, following observations of neuronal, astrocytic and nuclear coverage on strips of different lengths, widths and thicknesses. Neuronal and glial growth was characterized ‘on’, ‘adjacent to’ and ‘away from’ the parylene strips. In addition, the article reports how the same material combination can be used to isolate single cells along thin tracks of parylene-C. This is demonstrated with a series of high magnification images of the experimental observations for varying parylene strip widths and thicknesses. Thus, the findings demonstrate the possibility to culture cells on ultra-thin layers of parylene-C and localize single cells on thin strips. Such work is of interest and significance to the Neuroengineering and Multi-Electrode Array (MEA) communities, as it provides an alternative insulating material in the fabrication of embedded micro-electrodes, which can be used to facilitate single cell stimulation and recording in capacitive coupling mode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this communication, we describe a new method which has enabled the first patterning of human neurons (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/silicon dioxide substrates. We reveal the details of the nanofabrication processes, cell differentiation and culturing protocols necessary to successfully pattern hNT neurons which are each key aspects of this new method. The benefits in patterning human neurons on silicon chip using an accessible cell line and robust patterning technology are of widespread value. Thus, using a combined technology such as this will facilitate the detailed study of the pathological human brain at both the single cell and network level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In our previous work we developed a successful protocol to pattern the human hNT neuron (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/SiO2 substrates. This communication, reports how we have successfully managed to pattern the supportive cell to the neuron, the hNT astrocyte, on such substrates. Here we disseminate the nanofabrication, cell differentiation and cell culturing protocols necessary to successfully pattern the first human hNT astrocytes to single cell resolution on parylene-C/SiO2 substrates. This is performed for varying parylene strip widths providing excellent contrast to the SiO2 substrate and elegant single cell isolation at 10μm strip widths. The breakthrough in patterning human cells on a silicon chip has widespread implications and is valuable as a platform technology as it enables a detailed study of the human brain at the cellular and network level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pine wood and barley straw biochar amendments to Kettering and Cameroon sandy silt loam soils (15, 30, or 150 mg biochar g−1 soil) caused significant reductions (up to 80%,

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of versatile bioactive surfaces able to emulate in vivo conditions is of enormous importance to the future of cell and tissue therapy. Tuning cell behaviour on two-dimensional surfaces so that the cells perform as if they were in a natural three-dimensional tissue represents a significant challenge, but one that must be met if the early promise of cell and tissue therapy is to be fully realised. Due to the inherent complexities involved in the manufacture of biomimetic three-dimensional substrates, the scaling up of engineered tissue-based therapies may be simpler if based upon proven two-dimensional culture systems. In this work, we developed new coating materials composed of the self-assembling peptide amphiphiles (PAs) C16G3RGD (RGD) and C16G3RGDS (RGDS) shown to control cell adhesion and tissue architecture while avoiding the use of serum. When mixed with the C16ETTES diluent PA at 13 : 87 (mol mol-1) ratio at 1.25 times 10-3 M, the bioactive {PAs} were shown to support optimal adhesion, maximal proliferation, and prolonged viability of human corneal stromal fibroblasts ({hCSFs)}, while improving the cell phenotype. These {PAs} also provided stable adhesive coatings on highly-hydrophobic surfaces composed of striated polytetrafluoroethylene ({PTFE)}, significantly enhancing proliferation of aligned cells and increasing the complexity of the produced tissue. The thickness and structure of this highly-organised tissue were similar to those observed in vivo, comprising aligned newly-deposited extracellular matrix. As such, the developed coatings can constitute a versatile biomaterial for applications in cell biology, tissue engineering, and regenerative medicine requiring serum-free conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previously, using an in vitro static batch culture system, it was found that rice bran (RB), inulin, fibersol, mannanoligosaccharides (MOS), larch arabinogalactan and citrus pectin elicited prebiotic effects (in terms of increased numbers of bifidobacteria and lactic acid bacteria) on the faecal microbiota of a dog. The aim of the present study was to confirm the prebiotic potential of each individual substrate using multiple faecal donors, as well as assessing the prebiotic potential of 15 substrate blends made from them. Anaerobic static and stirred, pH-controlled batch culture systems inoculated with faecal samples from healthy dogs were used for this purpose. Fluorescence in situ hybridization (FISH) analysis using seven oligonucleotide probes targeting selected bacterial groups and DAPI (total bacteria) was used to monitor bacterial populations during fermentation runs. High-performance liquid chromatography was used to measure butyrate produced as a result of bacterial fermentation of the substrates. RB and a MOS/RB blend (1:1, w/w) were shown to elicit prebiotic and butyrogenic effects on the canine microbiota in static batch culture fermentations. Further testing of these substrates in stirred, pH-controlled batch culture fermentation systems confirmed the prebiotic and butyrogenic effects of MOS/RB, with no enhancement of Clostridium clusters I and II and Escherichia coli populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sequential extraction method was utilized to analyze seven forms of P in an integrated vertical-flow constructed wetland (IVFCW) containing earthworms and different substrates. The aluminum-bound P (Al-P) content was found to be lower, and the occluded P (Oc-P) content was higher in the IVFCW. The addition of earthworms into the influent chamber of IVFCW increased the exchange P (Ex-P), iron-bound P (Fe-P), calcium bound P (Ca-P), Oc-P, detritus-bound (De-P) and organic P (Org-P) content in the influent chamber, and also enhanced P content uptake by wetland plants. A significantly positive correlation between P content of above-ground wetland plants and the Ex-P, Fe-P, Oc-P and Org-P content in the rhizosphere was found (P < 0.05), which indicated that the Ex-P, Fe-P, Oc-P and Org-P could be bio-available P. The Ex-P, Fe-P, De-P, Oc-P and Ca-P content of the influent chamber was higher where the substrate contained a mixture of Qing sand and river sand rather than only river sand. Also the IVFCW with earthworms and both Qing sand and river sand had a higher removal efficiency of P, which was related to higher P content uptake by wetland plants and P retained in IVFCW. These findings suggest that addition of earthworms in IVFCW increases the bioavailable P content, resulting in enhanced P content uptake by wetland plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To analyse the mechanism and kinetics of DNA strand cleavages catalysed by the serine recombinase Tn3 resolvase, we made modified recombination sites with a single-strand nick in one of the two DNA strands. Resolvase acting on these sites cleaves the intact strand very rapidly, giving an abnormal half-site product which accumulates. We propose that these reactions mimic second-strand cleavage of an unmodified site. Cleavage occurs in a synapse of two sites, held together by a resolvase tetramer; cleavage at one site stimulates cleavage at the partner site. After cleavage of a nicked-site substrate, the half-site that is not covalently linked to a resolvase subunit dissociates rapidly from the synapse, destabilizing the entire complex. The covalent resolvase–DNA linkages in the natural reaction intermediate thus perform an essential DNA-tethering function. Chemical modifications of a nicked-site substrate at the positions of the scissile phosphodiesters result in abolition or inhibition of resolvase-mediated cleavage and effects on resolvase binding and synapsis, providing insight into the serine recombinase catalytic mechanism and how resolvase interacts with the substrate DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differentiated human neural stem cells were cultured in an inert three-dimensional (3D) scaffold and, unlike two-dimensional (2D) but otherwise comparable monolayer cultures, formed spontaneously active, functional neuronal networks that responded reproducibly and predictably to conventional pharmacological treatments to reveal functional, glutamatergic synapses. Immunocytochemical and electron microscopy analysis revealed a neuronal and glial population, where markers of neuronal maturity were observed in the former. Oligonucleotide microarray analysis revealed substantial differences in gene expression conferred by culturing in a 3D vs a 2D environment. Notable and numerous differences were seen in genes coding for neuronal function, the extracellular matrix and cytoskeleton. In addition to producing functional networks, differentiated human neural stem cells grown in inert scaffolds offer several significant advantages over conventional 2D monolayers. These advantages include cost savings and improved physiological relevance, which make them better suited for use in the pharmacological and toxicological assays required for development of stem cell-based treatments and the reduction of animal use in medical research.