41 resultados para STRUCTURE-ACTIVITY RELATIONSHIPS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We argue that population modeling can add value to ecological risk assessment by reducing uncertainty when extrapolating from ecotoxicological observations to relevant ecological effects. We review other methods of extrapolation, ranging from application factors to species sensitivity distributions to suborganismal (biomarker and "-omics'') responses to quantitative structure activity relationships and model ecosystems, drawing attention to the limitations of each. We suggest a simple classification of population models and critically examine each model in an extrapolation context. We conclude that population models have the potential for adding value to ecological risk assessment by incorporating better understanding of the links between individual responses and population size and structure and by incorporating greater levels of ecological complexity. A number of issues, however, need to be addressed before such models are likely to become more widely used. In a science context, these involve challenges in parameterization, questions about appropriate levels of complexity, issues concerning how specific or general the models need to be, and the extent to which interactions through competition and trophic relationships can be easily incorporated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a continuing effort to establish the structure-activity relationships (SARs) within the series of the angiotensin II antagonists (sartans), a pharmacophoric model was built by using novel TOPP 3D descriptors. Statistical values were satisfactory (PC4: r(2)=0.96, q(2) ((5) (random) (groups))=0.84; SDEP=0.26) and encouraged the synthesis and consequent biological evaluation of a series of new pyrrolidine derivatives. SAR together with a combined 3D quantitative SAR and high-throughput virtual screening showed that the newly synthesized 1-acyl-N-(biphenyl-4-ylmethyl)pyrrolidine-2-carboxamides may represent an interesting starting point for the design of new antihypertensive agents. In particular, biological tests performed on CHO-hAT(1) cells stably expressing the human AT(1) receptor showed that the length of the acyl chain is crucial for the receptor interaction and that the valeric chain is the optimal one.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the signalling properties of the chemokine receptor, CCR5, using several assays for agonism: stimulation of changes in intracellular Ca2+ or CCR5 internalisation in CHO cells expressing CCR5 or stimulation of [S-35]GTP gamma S binding in membranes of CHO cells expressing CCR5. Four isoforms of the chemokine CCL3 with different amino termini (CCL3, CCL3(2-70), CCL3(5-70), CCL3L1) were tested in these assays in order to probe structure/activity relationships. Each isoform exhibited agonism. The pattern of agonism (potency, maximal effect) was different in the three assays, although the rank order was the same with CCL3L1 being the most potent and efficacious. The data show that the amino terminus of the chemokine is important for signalling. A proline at position 2 (CCL3L1) provides for high potency and efficacy but the isoform with a serine at position 2 (CCL3(2-70)) is as efficacious in some assays showing that the proline is not the only determinant of high efficacy. We also increased the sensitivity of CCR5 signalling by treating cells with sodium butyrate, thus increasing the receptor/G protein ratio. This allowed the detection of a change in intracellular Ca2+ after treatment with CCL7 and Met-RANTES showing that these ligands possess measurable but low efficacy. This study therefore shows that sodium butyrate treatment increases the sensitivity of signalling assays and enables the detection of efficacy in ligands previously considered as antagonists. The use of different assay systems, therefore, provides different estimates of efficacy for some ligands at this receptor. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many different reagents and methodologies have been utilised for the modification of synthetic and biological macromolecular systems. In addition, an area of intense research at present is the construction of hybrid biosynthetic polymers, comprised of biologically active species immobilised or complexed with synthetic polymers. One of the most useful and widely applicable techniques available for functionalisation of macromolecular systems involves indiscriminate carbene insertion processes. The highly reactive and non-specific nature of carbenes has enabled a multitude of macromolecular structures to be functionalised without the need for specialised reagents or additives. The use of diazirines as stable carbene precursors has increased dramatically over the past twenty years and these reagents are fast becoming the most popular photophors for photoaffinity labelling and biological applications in which covalent modification of macromolecular structures is the basis to understanding structure-activity relationships. This review reports the synthesis and application of a diverse range of diazirines in macromolecular systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative structure activity relationships (QSARs) have been developed to optimise the choice of nitrogen heterocyclic molecules that can be used to separate the minor actinides such as americium(III) from europium(III) in the aqueous PUREX raffinate of nuclear waste. Experimental data on distribution coefficients and separation factors (SFs) for 47 such ligands have been obtained and show SF values ranging from 0.61 to 100. The ligands were divided into a training set of 36 molecules to develop the QSAR and a test set of 11 molecules to validate the QSAR. Over 1500 molecular descriptors were calculated for each heterocycle and the Genetic Algorithm was used to select the most appropriate for use in multiple regression equations. Equations were developed fitting the separation factors to 6-8 molecular descriptors which gave r(2) values of >0.8 for the training set and values of >0.7 for the test set, thus showing good predictive quality. The descriptors used in the equations were primarily electronic and steric. These equations can be used to predict the separation factors of nitrogen heterocycles not yet synthesised and/or tested and hence obtain the most efficient ligands for lanthanide and actinide separation. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dietary polyphenols have received attention for their biologically significant functions as antioxidants, anticarcinogens or antimutagens, which have led to their recognition as potential nutraceuticals. Polyphenols also characteristically possess a significant binding affinity for proteins, which can lead to the formation of soluble and insoluble protein-polyphenol complexes. Questions remain concerning whether and to what extent the protein-polyphenol interaction influences functionality. For example, is the formation of protein-polyphenol complexes an obstacle to the nutritional bioavailability of either species? This article discusses the development of suitable methodologies to investigate the physicochemical basis of protein-polyphenol interactions and the influence of structure-activity relationships on binding affinities. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Essential oils have been widely used in traditional medicine for the eradication of lice, including head lice, but due to the variability of their constitution the effects may not be reproducible. In an attempt to assess the contribution of their component monoterpenoids, a range of common individual compounds were tested in in vitro toxicity model against both human lice (Pediculus humanus, an accepted model of head lice lethality) and their eggs, at different concentrations. No detailed study into the relative potencies of their constituent terpenoids has so far been published. Adult lice were observed for lack of response to stimuli over 3 h and the LT50 calculated, and the percentage of eggs failing to hatch was used to generate ovicidal activity data. A ranking was compiled for adult lice and partially for eggs, enabling structure-activity relationships to be assessed for lethality to both, and showed that, for activity in both life-cycle stages, different structural criteria were required. (+)-Terpinen-4-ol was the most effective compound against adult lice, followed by other mono-oxygenated monocyclic compounds, whereas nerolidol was particularly lethal to eggs, but ineffective against adult lice. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the signalling properties of the chemokine receptor, CCR5, using several assays for agonism: stimulation of changes in intracellular Ca(2+) or CCR5 internalisation in CHO cells expressing CCR5 or stimulation of [(35)S]GTPgammaS binding in membranes of CHO cells expressing CCR5. Four isoforms of the chemokine CCL3 with different amino termini (CCL3, CCL3(2-70), CCL3(5-70), CCL3L1) were tested in these assays in order to probe structure/activity relationships. Each isoform exhibited agonism. The pattern of agonism (potency, maximal effect) was different in the three assays, although the rank order was the same with CCL3L1 being the most potent and efficacious. The data show that the amino terminus of the chemokine is important for signalling. A proline at position 2 (CCL3L1) provides for high potency and efficacy but the isoform with a serine at position 2 (CCL3(2-70)) is as efficacious in some assays showing that the proline is not the only determinant of high efficacy. We also increased the sensitivity of CCR5 signalling by treating cells with sodium butyrate, thus increasing the receptor/G protein ratio. This allowed the detection of a change in intracellular Ca(2+) after treatment with CCL7 and Met-RANTES showing that these ligands possess measurable but low efficacy. This study therefore shows that sodium butyrate treatment increases the sensitivity of signalling assays and enables the detection of efficacy in ligands previously considered as antagonists. The use of different assay systems, therefore, provides different estimates of efficacy for some ligands at this receptor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An examination of crystallographic data has indicated that the structure/activity relationship for diorganotin dihalide complexes is different from that of other metal dihalides, in that the SnN bond lengths appear to determine the antitumour activity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The cupin superfamily is a group of functionally diverse proteins that are found in all three kingdoms of life, Archaea, Eubacteria, and Eukaryota. These proteins have a characteristic signature domain comprising two histidine- containing motifs separated by an intermotif region of variable length. This domain consists of six beta strands within a conserved beta barrel structure. Most cupins, such as microbial phosphomannose isomerases (PMIs), AraC- type transcriptional regulators, and cereal oxalate oxidases (OXOs), contain only a single domain, whereas others, such as seed storage proteins and oxalate decarboxylases (OXDCs), are bi-cupins with two pairs of motifs. Although some cupins have known functions and have been characterized at the biochemical level, the majority are known only from gene cloning or sequencing projects. In this study, phylogenetic analyses were conducted on the conserved domain to investigate the evolution and structure/function relationships of cupins, with an emphasis on single- domain plant germin-like proteins (GLPs). An unrooted phylogeny of cupins from a wide spectrum of evolutionary lineages identified three main clusters, microbial PMIs, OXDCs, and plant GLPs. The sister group to the plant GLPs in the global analysis was then used to root a phylogeny of all available plant GLPs. The resulting phylogeny contained three main clades, classifying the GLPs into distinct subfamilies. It is suggested that these subfamilies correlate with functional categories, one of which contains the bifunctional barley germin that has both OXO and superoxide dismutase (SOD) activity. It is proposed that GLPs function primarily as SODs, enzymes that protect plants from the effects of oxidative stress. Closer inspection of the DNA sequence encoding the intermotif region in plant GLPs showed global conservation of thymine in the second codon position, a character associated with hydrophobic residues. Since many of these proteins are multimeric and enzymatically inactive in their monomeric state, this conservation of hydrophobicity is thought to be associated with the need to maintain the various monomer- monomer interactions. The type of structure-based predictive analysis presented in this paper is an important approach for understanding gene function and evolution in an era when genomes from a wide range of organisms are being sequenced at a rapid rate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This review summarizes the recent discovery of the cupin superfamily (from the Latin term "cupa," a small barrel) of functionally diverse proteins that initially were limited to several higher plant proteins such as seed storage proteins, germin (an oxalate oxidase), germin-like proteins, and auxin-binding protein. Knowledge of the three-dimensional structure of two vicilins, seed proteins with a characteristic beta-barrel core, led to the identification of a small number of conserved residues and thence to the discovery of several microbial proteins which share these key amino acids. In particular, there is a highly conserved pattern of two histidine-containing motifs with a varied intermotif spacing. This cupin signature is found as a central component of many microbial proteins including certain types of phosphomannose isomerase, polyketide synthase, epimerase, and dioxygenase. In addition, the signature has been identified within the N-terminal effector domain in a subgroup of bacterial AraC transcription factors. As well as these single-domain cupins, this survey has identified other classes of two-domain bicupins including bacterial gentisate 1, 2-dioxygenases and 1-hydroxy-2-naphthoate dioxygenases, fungal oxalate decarboxylases, and legume sucrose-binding proteins. Cupin evolution is discussed from the perspective of the structure-function relationships, using data from the genomes of several prokaryotes, especially Bacillus subtilis. Many of these functions involve aspects of sugar metabolism and cell wall synthesis and are concerned with responses to abiotic stress such as heat, desiccation, or starvation. Particular emphasis is also given to the oxalate-degrading enzymes from microbes, their biological significance, and their value in a range of medical and other applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A mapping between chains in the Protein Databank and Enzyme Classification numbers is invaluable for research into structure-function relationships. Mapping at the chain level is a non-trivial problem and we present an automatically updated Web-server, which provides this link in a queryable form and as a downloadable XML or flat file.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present updated structure-activity relations (SARs) for the prediction of rate coefficients for gas-phase reactions with alkenes of the major atmospheric oxidants NO3, OH and O-3. Such SARs provide one way of incorporating essential information about reactivity into atmospheric models. Rate coefficients obtained from correlations relating the logarithms of the rate coefficients to the energies of the highest occupied molecular orbitals (HOMOs) of the alkenes were used to refine the SARs. SARs have an advantage for the user over the direct application of the correlations in that knowledge of the structure of the alkene of interest is sufficient to estimate rate coefficients, and no quantum-mechanical calculations need to be performed. A comparison of the values predicted by the SARs with experimental data where they exist allowed us to assess the reliability of our method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Epidemiological and clinical trials reveal compelling evidence for the ability of dietary flavonoids to lower cardiovascular disease risk. The mechanisms of action of these polyphenolic compounds are diverse, and of particular interest is their ability to function as protein and lipid kinase inhibitors. We have previously described structure-activity studies that reinforce the possibility for using flavonoid structures as templates for drug design. In the present study, we aim to begin constructing rational screening strategies for exploiting these compounds as templates for the design of clinically relevant, antiplatelet agents. We used the platelet as a model system to dissect the structural influence of flavonoids, stilbenes, anthocyanidins, and phenolic acids on inhibition of cell signaling and function. Functional groups identified as relevant for potent inhibition of platelet function included at least 2 benzene rings, a hydroxylated B ring, a planar C ring, a C ring ketone group, and a C-2 positioned B ring. Hydroxylation of the B ring with either a catechol group or a single C-4' hydroxyl may be required for efficient inhibition of collagen-stimulated tyrosine phosphorylated proteins of 125 to 130 kDa, but may not be necessary for that of phosphotyrosine proteins at approximately 29 kDa. The removal of the C ring C-3 hydroxyl together with a hydroxylated B ring (apigenin) may confer selectivity for 37 to 38 kDa phosphotyrosine proteins. We conclude that this study may form the basis for construction of maps of flavonoid inhibitory activity on kinase targets that may allow a multitargeted therapeutic approach with analogue counterparts and parent compounds.